대표
청구항
▼
1. A battery module, comprising: a first battery cell having at least a first terminal;a second battery cell having at least a second terminal;a third battery cell having at least a third terminal;an interconnect member having:a first electrically-conductive plate portion having a first thickness and being welded to the first terminal, the first electrically-conductive plate portion having first and second ends;a second electrically-conductive plate portion having a second thickness equal to the first thickness and being welded to the second terminal, th...
1. A battery module, comprising: a first battery cell having at least a first terminal;a second battery cell having at least a second terminal;a third battery cell having at least a third terminal;an interconnect member having:a first electrically-conductive plate portion having a first thickness and being welded to the first terminal, the first electrically-conductive plate portion having first and second ends;a second electrically-conductive plate portion having a second thickness equal to the first thickness and being welded to the second terminal, the second electrically-conductive plate portion extending generally parallel to the first electrically-conductive plate portion, the second electrically-conductive plate portion having first and second ends, the first end of the second electrically-conductive plate portion being spaced apart from the first end of the first electrically-conductive plate portion a first distance, the second end of the second electrically-conductive plate portion being spaced apart from the second end of the first electrically-conductive plate portion a second distance such that the second end of the second electrically-conductive plate portion and the second end of the first electrically-conductive plate portion have a first gap therebetween that extends completely across the second distance, the second distance being substantially equal to the first distance;a third electrically-conductive plate portion having a third thickness equal to the first thickness and being welded to the third terminal, the third electrically-conductive plate portion extending generally parallel to the second electrically-conductive plate portion, the third electrically-conductive plate portion having first and second ends, the second end of the third electrically-conductive plate portion being spaced apart from the second end of the second electrically-conductive plate portion a third distance, the first end of the third electrically-conductive plate portion being spaced apart from the first end of the second electrically-conductive plate portion of a fourth distance such that the first end of the third electrically-conductive plate portion and the first end of the second electrically-conductive plate portion have a second gap therebetween that extends completely across the fourth distance, the third distance being substantially equal to the fourth distance;a first electrically-conductive vibration dampening portion directly coupled to and between the first end of the first electrically-conductive plate portion and the first end of the second electrically-conductive plate portion, the first electrically-conductive vibration dampening portion extending perpendicular to the first terminal of the first battery cell, the first electrically-conductive vibration dampening portion having a fourth thickness greater than the first thickness along an entire length of the first electrically-conductive vibration dampening portion, such that vibrations induced on the first electrically-conductive plate portion are attenuated when a portion of the vibrations induced in the first electrically-conductive plate portion pass through the first electrically-conductive vibration dampening portion to the second electrically-conductive plate portion; anda second electrically-conductive vibration dampening portion directly coupled to and between the second end of the second electrically-conductive plate portion and the second end of the third electrically-conductive plate portion, the second electrically-conductive vibration dampening portion extending perpendicular to the second terminal of the second battery cell, the second electrically-conductive vibration dampening portion having a fifth thickness greater than the second thickness along an entire length of the second electrically-conductive vibration dampening portion, such that vibrations induced on the second electrically-conductive plate portion are attenuated when a portion of the vibrations induced on the second electrically-conductive plate portion pass through the second electrically-conductive vibration dampening portion to the third electrically-conductive plate portion. 2. The battery module of claim 1, wherein the first electrically-conductive vibration dampening portion is constructed of fourth and fifth electrically-conductive plate portions, the fifth electrically-conductive plate portion being bent such that a surface of the fifth electrically-conductive plate portion contacts a surface of the fourth electrically-conductive plate portion. 3. The battery module of claim 1, wherein the second electrically-conductive vibration dampening portion is parallel to the first electrically-conductive vibration dampening portion. 4. The battery module of claim 1, wherein the fourth thickness is at least twice as thick as the first thickness. 5. The battery module of claim 1, wherein the first electrically-conductive plate portion, the second electrically-conductive plate portion, and the first electrically-conductive vibration dampening portion are each constructed of copper. 6. The battery module of claim 1, wherein the first and second electrically-conductive vibration dampening portions are parallel to one another. 7. The battery module of claim 6, wherein the first and second electrically-conductive vibration dampening portions each have a thickness equal to one another. 8. The battery module of claim 1, wherein the first and second electrically-conductive plate portions have first and second major surfaces, respectively, facing one another that extend parallel to one another and are not co-planar with one another. 9. A battery module, comprising: a first battery cell having at least a first terminal;a second battery cell having at least a second terminal;a third battery cell having at least a third terminal;a fourth battery cell having at least a fourth terminal;an interconnect member having:a first copper plate portion having a first thickness that is welded to the first terminal, the first copper plate portion having first and second ends;a second copper plate portion having a second thickness equal to the first thickness that is welded to the second terminal, the second copper plate portion extending generally parallel to the first copper plate portion, the second copper plate portion having first and second ends, the first end of the second copper plate portion being spaced apart from the first end of the first copper plate portion of a first distance, the second end of the second copper plate portion being spaced apart from the second end of the first copper plate portion a second distance such that the second end of the second copper plate portion and the second end of the first copper plate portion have a first gap therebetween that extends completely across the second distance;a third copper plate portion having a third thickness equal to the first thickness that is welded to the third terminal, the third copper plate portion extending generally parallel to the second copper plate portion, the third copper plate portion having first and second ends, the second end of the third copper plate portion being spaced apart from the second end of the second copper plate portion a third distance, the first end of the third copper plate portion being spaced apart from the first end of the second copper plate portion a fourth distance such that the first end of the third copper plate portion and the first end of the second copper plate portion have a second gap therebetween that extends completely across the fourth distance; anda fourth copper plate portion having a fourth thickness equal to the first thickness that is welded to the fourth terminal, the fourth copper plate portion extending generally parallel to the third copper plate portion, the fourth copper plate portion having first and second ends;first, second, and third copper vibration dampening portions disposed generally perpendicular to the first, second, third, and fourth copper plate portions;the first copper vibration dampening portion directly coupled to and between the first end of the first copper plate portion and the first end of the second copper plate portion, the first copper vibration dampening portion extending perpendicular to the first terminal of the first battery cell, the first copper vibration dampening portion having a fifth thickness greater than the first thickness along an entire length of the first copper vibration dampening portion;the second copper vibration dampening portion directly coupled to and between the second end of the second copper plate portion and the second end of the third copper plate portion, the second copper vibration dampening portion extending perpendicular to the second terminal of the second battery cell, the second copper vibration dampening portion having a sixth thickness greater than the first thickness along an entire length of the second copper vibration dampening portion, such that vibrations induced on the first copper plate portion are attenuated when a portion of the vibrations pass through the first copper vibration dampening portion and the second copper vibration dampening portion to the third copper plate portion; andthe third copper vibration dampening portion directly coupled to and between the first end of the third copper plate portion and the first end of the fourth copper plate portion, the third copper vibration dampening portion extending perpendicular to the third terminal of the third battery cell, the third copper vibration dampening portion having a seventh thickness greater than the first thickness along an entire length of the third copper vibration dampening portion. 10. The battery module of claim 9, wherein the first, second, and third copper vibration dampening portions are parallel to one another. 11. The battery module of claim 10, wherein the first, second, and third copper vibration dampening portions each have a thickness equal to one another. 12. The battery module of claim 9, wherein the first and second copper plate portions have first and second major surfaces, respectively, facing one another that extend parallel to one another and are not co-planar with one another. 13. The battery module of claim 9, wherein the first distance is substantially equal to the second distance, and the third distance is substantially equal to the fourth distance. 14. A battery module, comprising: a first battery cell having at least a first terminal;a second battery cell having at least a second terminal;a third battery cell having at least a third terminal;an interconnect member having:a first flat electrically-conductive plate portion having a first thickness and being welded to the first terminal, the first flat electrically-conductive plate portion having first and second ends;a second flat electrically-conductive plate portion having a second thickness equal to the first thickness and being welded to the second terminal, the second flat electrically-conductive plate portion extending generally parallel to the first flat electrically-conductive plate portion, the second flat electrically-conductive plate portion having first and second ends, the first end of the second flat electrically-conductive plate portion being spaced apart from the first end of the first flat electrically-conductive plate portion a first distance, the second end of the second flat electrically-conductive plate portion being spaced apart from the second end of the first flat electrically-conductive plate portion a second distance such that the second end of the second flat electrically-conductive plate portion and the second end of the first flat electrically-conductive plate portion have a first gap therebetween that extends completely across the second distance, the first distance being substantially equal to the second distance;a third flat electrically-conductive plate portion having a third thickness equal to the first thickness and being welded to the third terminal, the third flat electrically-conductive plate portion extending generally parallel to the second flat electrically-conductive plate portion, the third flat electrically-conductive plate portion having first and second ends, the second end of the third flat electrically-conductive plate portion being spaced apart from the second end of the second flat electrically-conductive plate portion a third distance, the first end of the third flat electrically-conductive plate portion being spaced apart from the first end of the second flat electrically-conductive plate portion a fourth distance such that the first end of the third flat electrically-conductive plate portion and the first end of the second flat electrically-conductive plate portion have a second gap therebetween that extends completely across the fourth distance, the third distance being substantially equal to the fourth distance;a first electrically-conductive vibration dampening portion directly coupled to and between the first end of the first flat electrically-conductive plate portion and the first end of the second flat electrically-conductive plate portion, the first electrically-conductive vibration dampening portion extending perpendicular to the first and second flat electrically-conductive plate portions, the first electrically-conductive vibration dampening portion having a fourth thickness greater than the first thickness, such that vibrations induced on the first flat electrically-conductive plate portion are attenuated when a portion of the vibrations induced in the first flat electrically-conductive plate portion pass through the first electrically-conductive vibration dampening portion to the second flat electrically-conductive plate portion; anda second electrically-conductive vibration dampening portion directly coupled to and between the second end of the second flat electrically-conductive plate portion and the second end of the third flat electrically-conductive plate portion, the second electrically-conductive vibration dampening portion extending perpendicular to the second and third flat electrically-conductive plate portions, the second electrically-conductive vibration dampening portion having a fifth thickness greater than the second thickness, such that vibrations induced on the second flat electrically-conductive plate portion are attenuated when a portion of the vibrations induced on the second flat electrically-conductive plate portion pass through the second electrically-conductive vibration dampening portion to the third flat electrically-conductive plate portion. 15. The battery module of claim 14, wherein the first and second flat electrically-conductive plate portions have first and second major surfaces, respectively, facing one another that extend parallel to one another and are not co-planar with one another.