[미국특허]
Butterfly valve seal retaining arrangement
원문보기
IPC분류정보
국가/구분
United States(US) Patent
등록
국제특허분류(IPC7판)
F16K-001/226
F16K-001/20
F16J-015/18
출원번호
US-0547588
(2014-11-19)
등록번호
US-9816620
(2017-11-14)
발명자
/ 주소
Kennedy, Paul
출원인 / 주소
Kennedy Valve Company
대리인 / 주소
Brown & Michaels, PC
인용정보
피인용 횟수 :
0인용 특허 :
3
초록▼
A butterfly valve seal arrangement in a butterfly valve having a cylindrical flow channel with a wall includes a seal flange, an elastomeric seal, a seal channel, and an annular seal retaining ring. The seal flange extends into the cylindrical flow channel from the wall of the cylindrical flow chann
A butterfly valve seal arrangement in a butterfly valve having a cylindrical flow channel with a wall includes a seal flange, an elastomeric seal, a seal channel, and an annular seal retaining ring. The seal flange extends into the cylindrical flow channel from the wall of the cylindrical flow channel. The seal channel is recessed into the wall of the cylindrical flow channel adjacent to the seal flange. And the annular seal retaining ring includes tabs extending into the seal channel which hold the annular seal retaining ring in the cylindrical flow channel. An elastomeric seal is held in compression in the seal channel and against the seal flange by the annular seal retaining ring, and extends into the cylindrical flow channel forming a seal surface held in compression against a vane seat of a vane in a position perpendicular to a direction of flow.
대표청구항▼
1. A valve seal arrangement in a butterfly valve having a hollow valve body with an inlet, an outlet, and a cylindrical flow channel with a wall passing between the inlet and the outlet, a rotatable operating stem passing laterally through the hollow valve body and cylindrical flow channel of the ho
1. A valve seal arrangement in a butterfly valve having a hollow valve body with an inlet, an outlet, and a cylindrical flow channel with a wall passing between the inlet and the outlet, a rotatable operating stem passing laterally through the hollow valve body and cylindrical flow channel of the hollow valve body at a location between the inlet of the hollow valve body and the outlet of the hollow valve body, a vane with a vane seat formed about a circumference of the vane, the vane being located in the cylindrical flow channel of the hollow valve body and mechanically coupled to the rotatable operating stem, and rotatable from a first orientation perpendicular to a flow direction between the inlet of the hollow valve body and the outlet of the hollow valve body and a second orientation away from perpendicular to the flow direction between the inlet of the hollow valve body and the outlet of the hollow valve body, the valve seal arrangement comprising: a) a seal flange extending radially into the cylindrical flow channel of the hollow valve body from the wall of the cylindrical flow channel of the hollow valve body adjacent to the vane seat of the vane when the vane is in the first orientation;b) a seal channel with a first side, a second side, and a third side formed in the wall of the cylindrical flow channel of the hollow valve body, the first side being adjacent to the seal flange, the second side being recessed into the wall of the cylindrical flow channel of the hollow valve body, and the third side being opposite the first side;c) an annular seal retaining ring having a plurality of tabs extending from an outer circumference of the annular seal retaining ring into the seal channel, with an interface between the tabs and the third side of the seal channel holding the annular seal ring in the cylindrical flow channel of the hollow valve body opposite the seal flange and defining a space between the annular seal ring and the seal flange; andd) an elastomeric seal held in the seal channel between the annular seal retaining ring and the seal flange, with the elastomeric seal extending into the cylindrical flow channel through the space defined between the annular seal ring and the seal flange and forming a seal surface held in compression against the vane seat of the vane when the vane is in the first orientation;wherein the elastomeric seal is an O-ring having a circumference and a cross-sectional profile along the circumference, the cross-sectional profile being perpendicular to a plane defined by the circumference, the cross-sectional profile being in the shape of at least 90% of a circle when the elastomeric seal is in an uncompressed first state, and when the elastomeric seal is held in a compressed second state between the annular seal retaining ring and the seal flange, the elastomeric seal elastically deforms through the space defined between the annular seal ring and the seal flange and into the flow channel of the hollow valve body to form the seal surface held compressed against the vane seat of the vane when the vane is in the first orientation. 2. The valve seal arrangement of claim 1, wherein the O-ring is formed from a length of O-ring cord having a first end and a second end with the first end being bonded to the second end. 3. The valve seal arrangement of claim 1, further comprising a shim between the third side of the seal channel and the tabs of annular seal retaining ring. 4. The valve seal arrangement of claim 1, wherein the seal channel has a dove-tail shape. 5. The valve seal arrangement of claim 1, wherein the annular seal retaining ring has a retaining ring outer diameter, wherein the inlet has an inlet diameter, and wherein the retaining ring outer diameter is smaller than the inlet diameter. 6. The valve seal arrangement of claim 1, wherein the cross-sectional profile is entirely in the shape of a circle. 7. The valve seal arrangement of claim 1, wherein the outer circumference of the annular seal retaining ring is an outermost circumference of the annular seal retaining ring. 8. A butterfly valve comprising: a) a hollow valve body having an inlet, an outlet, and a cylindrical flow channel with a wall passing between the inlet and the outlet;b) a rotatable operating stem passing laterally through the hollow valve body and cylindrical flow channel of the hollow valve body at a location between the inlet of the hollow valve body and the outlet of the hollow valve body;c) a vane with a vane seat formed about a circumference of the vane, the vane being located in the cylindrical flow channel of the hollow valve body, mechanically coupled to the rotatable operating stem, and rotatable from a first orientation perpendicular to a flow direction between the inlet of the hollow valve body and the outlet of the hollow valve body, and a second orientation away from perpendicular to the flow direction between the inlet of the hollow valve body and the outlet of the hollow valve body;d) a seal flange extending radially into the cylindrical flow channel of the hollow valve body from the wall of the cylindrical flow channel of the hollow valve body adjacent to the vane seat of the vane when the vane is in the first orientation;e) a seal channel with a first side, a second side, and a third side formed in the wall of the cylindrical flow channel of the hollow valve body, the first side being adjacent to the seal flange, the second side being recessed into the wall of the cylindrical flow channel of the hollow valve body, and the third side being opposite the first side;f) an annular seal retaining ring having a plurality of tabs extending from an outer circumference of the annular seal retaining ring into the seal channel, with an interface between the tabs and the third side of the seal channel holding the annular seal retaining ring in the cylindrical flow channel of the hollow valve body opposite the seal flange and defining a space between the annular seal retaining ring and the seal flange; andg) an elastomeric seal held in the seal channel between the annular seal retaining ring and the seal flange, the elastomeric seal extending into the cylindrical flow channel through the space defined between the annular seal ring and the seal flange and forming a seal surface held in compression against the vane seat of the vane when the vane is in the first orientation;wherein the elastomeric seal is an O-ring having a circumference and a cross-sectional profile along the circumference, the cross-sectional profile being perpendicular to a plane defined by the circumference, the cross-sectional profile being in the shape of at least 90% of a circle when the elastomeric seal is in an uncompressed first state, and when the elastomeric seal is held in a compressed second state between the annular seal retaining ring and the seal flange, the elastomeric seal elastically deforms through the space defined between the annular seal ring and the seal flange and into the flow channel of the hollow valve body to form the seal surface held compressed against the vane seat of the vane when the vane is in the first orientation. 9. The butterfly valve of claim 8, wherein the O-ring is formed from a length of O-ring cord having a first end and a second end with the first end being bonded to the second end. 10. The butterfly valve of claim 8, further comprising a shim between the third side of the seal channel and the tabs of annular seal retaining ring. 11. The butterfly valve of claim 8, wherein the seal channel has a dove-tail shape. 12. The butterfly valve of claim 8, wherein the annular seal retaining ring has a retaining ring outer diameter, wherein the inlet has an inlet diameter, and wherein the retaining ring outer diameter is smaller than the inlet diameter. 13. The butterfly valve of claim 8, wherein the cross-sectional profile is entirely in the shape of a circle. 14. The butterfly valve of claim 8, wherein the outer circumference of the annular seal retaining ring is an outermost circumference of the annular seal retaining ring. 15. A valve seal arrangement in a butterfly valve having a hollow valve body with an inlet, an outlet, and a cylindrical flow channel with a wall passing between the inlet and the outlet, a rotatable operating stem passing laterally through the hollow valve body and cylindrical flow channel of the hollow valve body at a location between the inlet of the hollow valve body and the outlet of the hollow valve body, a vane with a vane seat formed about a circumference of the vane, the vane being located in the cylindrical flow channel of the hollow valve body and mechanically coupled to the rotatable operating stem, and rotatable from a first orientation perpendicular to a flow direction between the inlet of the hollow valve body and the outlet of the hollow valve body and a second orientation away from perpendicular to the flow direction between the inlet of the hollow valve body and the outlet of the hollow valve body, the valve seal arrangement comprising: a) a seal flange extending radially into the cylindrical flow channel of the hollow valve body from the wall of the cylindrical flow channel of the hollow valve body adjacent to the vane seat of the vane when the vane is in the first orientation;b) a seal channel with a first side, a second side, and a third side formed in the wall of the cylindrical flow channel of the hollow valve body, the first side being adjacent to the seal flange, the second side being recessed into the wall of the cylindrical flow channel of the hollow valve body, and the third side being opposite the first side;c) an annular seal retaining ring having a plurality of tabs extending from an outer circumference of the annular seal retaining ring into the seal channel, with an interface between the tabs and the third side of the seal channel holding the annular seal ring in the cylindrical flow channel of the hollow valve body opposite the seal flange and defining a space between the annular seal ring and the seal flange; andd) an elastomeric seal held in the seal channel between the annular seal retaining ring and the seal flange, with the elastomeric seal extending into the cylindrical flow channel through the space defined between the annular seal ring and the seal flange and forming a seal surface held in compression against the vane seat of the vane when the vane is in the first orientation;wherein the annular seal retaining ring has a retaining ring outer diameter, the inlet has an inlet diameter, and the retaining ring outer diameter is smaller than the inlet diameter.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.