[미국특허]
Patient remote and associated methods of use with a nerve stimulation system
원문보기
IPC분류정보
국가/구분
United States(US) Patent
등록
국제특허분류(IPC7판)
A61N-001/36
A61N-001/372
출원번호
US-0992777
(2016-01-11)
등록번호
US-9895546
(2018-02-20)
발명자
/ 주소
Jiang, Guangqiang
Woock, John
Schroeder, Dennis
Schmid, Eric
출원인 / 주소
AXONICS MODULATION TECHNOLOGIES, INC.
대리인 / 주소
Kilpatrick Townsend & Stockton LLP
인용정보
피인용 횟수 :
0인용 특허 :
211
초록▼
A neurostimulation system having an external or an implantable pulse generator programmed to innervate a specific nerve or group of nerves in a patient through an electrode as a mode of treatment, having a patient remote that wirelessly communicates with the pulse generator to increase stimulation,
A neurostimulation system having an external or an implantable pulse generator programmed to innervate a specific nerve or group of nerves in a patient through an electrode as a mode of treatment, having a patient remote that wirelessly communicates with the pulse generator to increase stimulation, decrease stimulation, and provide indications to a patient regarding the status of the neurostimulation system. The patient remote can allow for adjustment of stimulation power within a clinically effective range and for turning on and turning off the pulse generator. The patient remote and neurostimulation system can also store a stimulation level when the pulse generator is turned off and automatically restore the pulse generator to the stored stimulation level when the pulse generator is turned on.
대표청구항▼
1. A patient remote configured to wirelessly control a nerve-stimulating pulse generator coupled to an implantable lead in a patient, the patient remote comprising: a portable housing configured to be operable by a single hand of an operator;circuitry disposed within the portable housing, the circui
1. A patient remote configured to wirelessly control a nerve-stimulating pulse generator coupled to an implantable lead in a patient, the patient remote comprising: a portable housing configured to be operable by a single hand of an operator;circuitry disposed within the portable housing, the circuitry configured to wirelessly communicate with the pulse generator;an activation button disposed on an exterior surface of the portable housing and coupled to the circuitry, wherein the circuitry is further configured to reconfigure the patient remote between an awake mode and an asleep mode when the activation button is actuated; anda stimulation-increase button disposed on the exterior surface of the portable housing, the stimulation-increase button coupled to the circuitry, wherein when the stimulation-increase button is actuated the circuitry is further configured to wirelessly send instruction signals to the pulse generator to increase a stimulation level of the pulse generator;wherein when the patient remote is in the awake mode, actuation of the stimulation-increase button for a first period of time causes the circuitry to communicate the instruction signals to the pulse generator to increase the stimulation level of the pulse generator, and actuation of the stimulation-increase button for a second period of time causes the circuitry to communicate the instruction signals to the pulse generator to restore the pulse generator to a last stored stimulation level. 2. The patient remote of claim 1, wherein first period of time comprises a period of time less than a threshold period and the second period of time comprises a period of time greater than the threshold, wherein actuation of the stimulation-increase button for the second period of time ramps the stimulation level to the last stored stimulation level, and wherein the threshold period is three seconds or more. 3. The patient remote of claim 1, further comprising a memory element coupled to the circuitry, and further comprising a stimulation-decrease button disposed on the exterior surface of the portable housing and coupled to the circuitry so as to wirelessly decrease the stimulation level of the pulse generator, wherein when the patient remote is in the awake mode, actuation of the stimulation-decrease button for the first period of time decreases the stimulation level, and actuation of the stimulation-decrease button for the second period of time stores the stimulation level in the memory element for subsequent use as the stored stimulation level and turns off the stimulation by the pulse generator. 4. The patient remote of claim 3, wherein the circuitry is configured so that repeated actuation of the stimulation-increase button can incrementally increase the stimulation level no more than four stimulation levels above a nominal stimulation level and repeated actuation of the stimulation-decrease button can incrementally decrease the stimulation level down respectively no more than three stimulation levels below the nominal stimulation level. 5. The patient remote of claim 3, wherein each stimulation level increase or stimulation level decrease of the pulse generator comprises more than 5 percent of a nominal stimulation level or a current stimulation level. 6. The patient remote of claim 1, further comprising a stimulation-level display disposed on the exterior surface of the portable housing, the stimulation-level display and circuitry configured to indicate a current stimulation level of the pulse generator when the activation button of the patient remote is switched from the asleep mode to the awake mode. 7. The patient remote of claim 6, wherein the stimulation-level display comprises a plurality of light emitting diodes, wherein a number of illuminated light emitting diodes indicates the current stimulation level of the pulse generator. 8. The patient remote of claim 6, wherein the stimulation-level display comprises at least seven light emitting diodes of at least three or four differing sizes, wherein a nominal stimulation level corresponds to illumination of the first three or four light emitting diodes. 9. The patient remote of claim 1, further comprising a therapy-remaining display on the exterior surface of the portable housing, the therapy-remaining display and circuitry configured to indicate therapy remaining status of the pulse generator based on at least a charge or voltage remaining in a battery of the pulse generator and stimulation use by the patient. 10. The patient remote of claim 9, wherein the therapy-remaining display comprises a light emitting diode having a plurality of contrasting display modes, the display modes comprising a plurality of colors or flashing and non-flashing illumination or both and sufficient to indicate if the pulse generator needs re-charging, is charging, or has sufficient charge for at least a threshold number of days of stimulation. 11. The patient remote of claim 10, wherein the therapy-remaining display light emitting diode illuminates with a non-flashing green color to indicate at least 4 days of therapy remaining, illuminates with a non-flashing amber color to indicate 2-4 days of therapy remaining, and illuminates with a flashing amber color to indicate less than 2 days of therapy remaining. 12. The patient remote of claim 1, further comprising an automatic fault condition indicator disposed on the exterior surface of the portable housing configured to provide an alert if the pulse generator is in a fault condition. 13. The patient remote of claim 1, further comprising a haptic indicator coupled to the portable housing and configured to vibrate when a command from the patient remote has been executed by the pulse generator. 14. The patient remote of claim 1, wherein the patient remote is configured to wirelessly control either an external or implantable nerve-stimulating pulse generator and wherein the external or implantable nerve-stimulating pulse generator includes an implantable lead that comprises at least one electrode configured for insertion into a foramen of a sacrum near a sacral nerve. 15. The patient remote of claim 1, wherein the circuitry is configured to send instruction signals such that the stimulation level of the pulse generator is incrementally increased or decreased by a predetermined amount of a maximum stimulation level, a nominal stimulation level, or a current stimulation level of the pulse generator. 16. The patient remote of claim 15, wherein the predetermined amount is a percentage between five and twenty percent of: a maximum stimulation level, a nominal stimulation level, or a current stimulation level of the pulse generator. 17. The patient remote of claim 15, wherein the maximum stimulation level is set according to incremental step-sizes, corresponding to a comfort level of a patient. 18. The patient remote of claim 1, wherein the patient remote maintains the stimulation level after the stimulation level of the pulse generator is set, until the patient remote is operated by the operator to terminate or change stimulation by the pulse generator. 19. The patient remote of claim 1, wherein the patient remote circuitry is configured to pair with and communicate only and/or directly with the pulse generator.
Phillips, William C.; Olson, David P.; Schommer, Mark E.; Schmeling, Andrew L.; Elvidge, Michael J., Ambulatory energy transfer system for an implantable medical device and method therefore.
Thompson David L. (Fridley MN) McDonald Ray S. (St. Paul MN) Lee Yan S. (Plymouth MN) Stein Marc T. (Tempe AZ), Body stimulator having selectable stimulation energy levels.
Scott, Erik; Guy, Dave P., Capacity fade adjusted charge level or recharge interval of a rechargeable power source of an implantable medical device, system and method.
Amundson, Mark D.; Von Arx, Jeffrey A.; Linder, William J.; Rawat, Prashant; Mass, William R., Circumferential antenna for an implantable medical device.
Tippey Keith Edward (Knaresborough GBX) Axelgaard Jens (Fallbrook CA), Electrical stimulation for treatment of incontinence and other neuro-muscular disorders.
Winstrom, William L., External charging device for charging an implantable medical device and methods of regulating duty of cycle of an external charging device.
Olson, David P.; Schmeling, Andrew L.; Nelson, Steven J., External power source for an implantable medical device having an adjustable carrier frequency and system and method related therefore.
Schmeling,Andrew L.; Phillips,William C.; Olson,David P.; Jimenez,Oscar, External power source, charger and system for an implantable medical device having thermal characteristics and method therefore.
Forsberg, John W.; Palm, Jeffry C.; Wosmek, Mark G.; Deininger, Steven T.; McMullen, Raymond F.; Michaels, Matthew J.; Kelly, Kevin J., External presentation of electrical stimulation parameters.
Whitehurst, Todd K.; McGivern, James P.; Mann, Carla M., Fully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction.
Whitehurst, Todd K.; McGivern, James P.; Mann, Carla M., Fully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction.
Whitehurst,Todd K; McGivern,James P; Mann,Carla M, Fully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction.
Martin,Gregory R.; Turi,Gregg; Shanko,Marc; Elghandour,Rami; Palma,Thomas; Winstrom,William L., Implantable device and system and method for wireless communication.
Schulman Joseph H. ; Dell Robert Dan ; Mann Alfred E. ; Faltys Michael A., Implantable device with improved battery recharging and powering configuration.
Stevenson, Robert A.; Halperin, Henry R.; Lardo, Albert C.; Dabney, Warren S.; Kondabatni, Kishore Kumar; Frysz, Christine A.; Johnson, Robert Shawn; Moschiano, Holly Noelle, Implantable lead bandstop filter employing an inductive coil with parasitic capacitance to enhance MRI compatibility of active medical devices.
Swoyer, John M.; Carlson, Keith; Gerber, Martin T.; Mano, George J.; Spinelli, Michele; Hartle, Steven David, Implantable medical electrical stimulation lead fixation method and apparatus.
Swoyer, John M.; Gerber, Martin T.; Carlton, Keith; Mamo, George J.; Spinelli, Michele; Hartle, Steven David, Implantable medical electrical stimulation lead fixation method and apparatus.
Swoyer,John M.; Carlton,Keith; Gerber,Martin T.; Mamo,George J.; Spinelli,Michele; Hartle,Steven David, Implantable medical electrical stimulation lead fixation method and apparatus.
Swoyer, John M.; Carlton, Keith R.; Gerber, Martin T.; Mamo, George J.; Spinelli, Michele; Hartle, Steven D., Implantable medical lead including a plurality of tine elements.
Swoyer, John M.; Carlton, Keith R.; Gerber, Martin T.; Mamo, George J.; Spinelli, Michele; Hartle, Steven D., Implantable medical lead including tine markers.
Strother, Robert B.; Mrva, Joseph J.; Thrope, Geoffrey B., Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue.
Mann, Carla M.; Whitehurst, Todd K.; McGivern, James P.; Loeb, Gerald E.; Richmond, Frances J. R., Implantable stimulator methods for treatment of incontinence and pain.
Loeb, Gerald E.; Richmond, Francis J. R.; Mann, Carla M.; Faltys, Michael A.; Whitehurst, Todd K.; McGivern, James P., Implantable stimulator system and method for treatment of incontinence and pain.
Schulman Joseph H. ; Mann Alfred E. ; Gord John C. ; Lebel Ronald J., Implantable stimulator that prevents DC current flow without the use of discrete output coupling capacitors.
Davis, Scott J.; Carlton, Keith Richard; Gerber, Martin Theodore; Schmelzer, Thomas Delmar; Swoyer, John Matthew; Tronnes, Carole Anne, Implantable therapy delivery element adjustable anchor.
Olson, David P.; Phillips, William C.; Schmeling, Andrew L., Inductively rechargeable external energy source, charger, system and method for a transcutaneous inductive charger for an implantable medical device.
Olson, David P.; Phillips, William C.; Schmeling, Andrew L., Inductively rechargeable external energy source, charger, system and method for a transcutaneous inductive charger for an implantable medical device.
Ushikoshi Ryusuke,JPX ; Tsuruta Hideyoshi,JPX ; Fujii Tomoyuki,JPX, Joint structure of metal member and ceramic member and method of producing the same.
Kaula, Norbert; Iyassu, Yohannes, Method and system of graphical representation of lead connector block and implantable pulse generators on a clinician programmer.
Taylor William J. ; Wright John D. ; Lessar Joseph F. ; LaBree Gary F., Method of centerless ground finishing of feedthrough pins for an implantable medical device.
Spinelli; Michele, Malaguti; Sylvia, Gerber; Martin T., Giardiello; Gianluca, Method, system and device for treating disorders of the pelvic floor by means of electrical stimulation of the pudendal and associated nerves, and the optional delivery of drugs in association therewith.
Mamo, George; Spinelli, Michele; Swoyer, John Matthew; Gerber, Martin Theodore; Carlton, Keith Richard, Minimally invasive apparatus for implanting a sacral stimulation lead.
Mamo, George; Spinelli, Michele; Swoyer, John Matthew; Gerber, Martin Theodore; Carlton, Keith Richard, Minimally invasive apparatus for implanting a sacral stimulation lead.
Martin Theodore Gerber ; Michael C. Sherman, Minimally invasive surgical techniques for implanting devices that deliver stimulant to the nervous system.
Rahman, Md. Mizanur; Nimmagadda, Kiran; Parramon, Jordi; Feldman, Emanuel, Minimizing interference between charging and telemetry coils in an implantable medical device.
Carlton, Keith; Carcieri, Stephen, Remote control data management with correlation of patient condition to stimulation settings and/or with clinical mode providing a mismatch between settings and interface data.
Woods, Carla Mann; Peterson, David K. L.; Meadows, Paul; Loeb, Gerald E., System and method for displaying stimulation field generated by electrode array.
Moffitt, Michael; Peterson, David K. L., System and method for maintaining a distribution of currents in an electrode array using independent voltage sources.
Moffitt, Michael; Peterson, David K. L., System and method for maintaining a distribution of currents in an electrode array using independent voltage sources.
Barolat, Giancarlo; Cameron, Tracy L; Chavez, Christopher G, System and method for neurological stimulation of peripheral nerves to treat low back pain.
Barolat,Giancarlo; Cameron,Tracy L.; Chavez,Christopher G., System and method for neurological stimulation of peripheral nerves to treat low back pain.
Olson,David P.; Phillips,William C.; Schmeling,Andrew L.; Schommer,Mark E., System and method for transcutaneous energy transfer achieving high efficiency.
Cosendai,Gregoire; Zilberman,Ytizhak; Kuschner,Doug; Ripley,Anne Marie; Turk,Ruth; Burridge,Jane; Notley,Scott V.; Davis,Ross; Hansen,Morten; Mandell,Lee Jay; Schulman,Joseph H.; Dell,Robert Dan; Gord,John C., System and method suitable for treatment of a patient with a neurological deficit by sequentially stimulating neural pathways using a system of discrete implantable medical devices.
Gharib, James; Kaula, Norbert F.; Blewett, Jeffrey; Medeiros, legal representative, Goretti; Farquhar, Allen, System and methods for determining nerve proximity, direction, and pathology during surgery.
Kaula, Norbert; Blewett, Jeffrey; Medeiros, legal representative, Goretti; Gharib, James; Farquhar, Allen, System and methods for determining nerve proximity, direction, and pathology during surgery.
Gliner,Bradford Evan; Balzer,Jeffrey; Firlik,Andrew D., Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators.
McClure, Kelly H.; Loftin, Scott M.; Ozawa, Robert D.; Fister, Michael L., Systems and methods for communicating with or providing power to an implantable stimulator.
Bharmi, Rupinder; Farazi, Taraneh Ghaffari; Rooke, Ryan; Rosenberg, Stuart; Gupta, Kritika; Shah, Riddhi; Bornzin, Gene A.; Hou, Wenbo; Sloman, Laurence S., Systems and methods for controlling neurostimulation based on regional cardiac performance for use by implantable medical devices.
Fang, Zi-Ping; Caparso, Anthony V.; Walker, Andre B., Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions.
Stevenson, Robert A.; Dabney, Warren S.; Frysz, Christine A.; Brendel, Richard L., Tank filters placed in series with the lead wires or circuits of active medical devices to enhance MRI compatibility.
Shi,Jess Weigian; He,Yuping; Doan,Que T.; Peterson,David K. L., Techniques for sensing and adjusting a compliance voltage in an implantable stimulator device.
Klosterman, Daniel J.; McClure, Kelly H.; Marnfeldt, Goran N.; Parramon, Jordi; Haller, Matthew I.; Park, Rudolph V., Telemetry system for use with microstimulator.
Klosterman, Daniel J.; McClure, Kelly H.; Marnfeldt, Goran N.; Parramon, Jordi; Haller, Matthew I.; Park, Rudolph V., Telemetry system for use with microstimulator.
Klosterman,Daniel J.; McClure,Kelly H.; Marnfeldt,Goran N.; Parramon,Jordi; Haller,Matthew I.; Park,Rudolph V., Telemetry system for use with microstimulator.
Wang Xintao (Lake Jackson TX) Munshi Mohammed Zafar Amin (Missouri City TX), Transcutaneous energy transmission circuit for implantable medical device.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.