[미국특허]
Controlled steering functionality for implant-delivery tool
원문보기
IPC분류정보
국가/구분
United States(US) Patent
등록
국제특허분류(IPC7판)
A61F-002/24
A61B-017/068
A61M-025/01
A61M-025/04
A61B-017/064
A61B-017/00
A61B-090/00
A61B-034/20
A61M-025/06
A61M-029/00
출원번호
US-0437373
(2013-10-23)
등록번호
US-9949828
(2018-04-24)
우선권정보
WO-PCT/IL2012/050451 (2012-11-08)
국제출원번호
PCT/IL2013/050860
(2013-10-23)
국제공개번호
WO2014/064694
(2014-05-01)
발명자
/ 주소
Sheps, Tal
Hammer, Tal
Reich, Tal
Iflah, Ehud
Gross, Amir
Herman, Yaron
Koifman, Alexei
Zipory, Yuval
출원인 / 주소
Valtech Cardio, Ltd.
대리인 / 주소
Sanford Colb & Co.
인용정보
피인용 횟수 :
0인용 특허 :
332
초록▼
A catheter (14), advanced toward an anatomical site, has a proximal end and a steerable distal end. An anchor (32, 2332) is advanced through the catheter. An anchor driver (36) drives the anchor out of the catheter's distal end (104), anchoring the anchor at the site. A first constraining member (16
A catheter (14), advanced toward an anatomical site, has a proximal end and a steerable distal end. An anchor (32, 2332) is advanced through the catheter. An anchor driver (36) drives the anchor out of the catheter's distal end (104), anchoring the anchor at the site. A first constraining member (1602, 1652) engages tissue, and inhibits, after the anchor has been driven out of the catheter and before the anchoring, movement of at least the anchor driver's distal end, on a first axis between the anchor driver's distal end and a site at which the first constraining member engages the tissue. A second constraining member (26) inhibits, after the anchor has been driven out of the catheter and before the anchoring, movement of at least the anchor driver's distal end, on a second axis. Other embodiments are also described.
대표청구항▼
1. Apparatus, comprising: a catheter, transluminally advanceable to a valve of a heart of a subject;an implant: configured to be advanced distally through the catheter such that a distal end of the implant is placeable against tissue of the valve while a proximal end of the implant is disposed withi
1. Apparatus, comprising: a catheter, transluminally advanceable to a valve of a heart of a subject;an implant: configured to be advanced distally through the catheter such that a distal end of the implant is placeable against tissue of the valve while a proximal end of the implant is disposed within the catheter, andhaving a longitudinal axis between the distal end of the implant and the proximal end of the implant, and a lateral surface that circumscribes the longitudinal axis to define a lumen along the longitudinal axis;a guidewire: configured to be advanced distally through the catheter,coupled to the implant such that at least a distal portion of the guidewire extends distally from a hole in the lateral surface of the implant, the distal portion of the guidewire being configured to be advanced between leaflets of the valve,the apparatus being configured to mechanically bias placement of the distal end of the implant against the tissue of the valve at least in part dependently on a distance along the longitudinal axis between the distal end of the implant and the hole;a tissue anchor; andan anchor driver, configured such that the tissue anchor can be advanced through the catheter, into the lumen, and along the lumen to the distal end of the implant, and subsequently anchor the distal end of the implant to the tissue of the valve, by driving the tissue anchor through the lateral surface proximate the distal end of the implant and into the tissue of the valve. 2. The apparatus according to claim 1, wherein the apparatus is configured to bias the placement of the distal end of the implant against the tissue at least in part dependently on a stiffness of the guidewire. 3. The apparatus according to claim 1, wherein the guidewire is configured to engage a commissure of the valve, and the apparatus is configured, when the guidewire engages the commissure, to inhibit movement, on a plane of the valve, of the distal end of the implant outside of an arc centered on the commissure. 4. The apparatus according to claim 1, wherein the guidewire is coupled to the implant such that the guidewire extends proximally from the hole and out of a body of the subject. 5. The apparatus according to claim 4, wherein the guidewire extends proximally from the hole, exits from a point in the lateral surface of the implant, and extends proximally through the catheter along the outside of the implant. 6. The apparatus according to claim 1, wherein the guidewire is retractable through the hole and decouplable from the implant. 7. A method for using the apparatus of claim 1, the method comprising: transluminally advancing a distal end of the catheter toward an anatomical site of the subject;advancing the implant through at least part of the catheter while the distal portion of the guidewire extends out of the lateral surface of the implant;implanting the implant at the anatomical site; andremoving the guidewire from the subject.
Miller, Eran; Gross, Amir; Cabiri, Oz; Beinart, Iftah; Baum, Aviram, Actively-engageable movement-restriction mechanism for use with an annuloplasty structure.
Solem, Jan Otto; Kimblad, Per Ola; von Oepen, Randolf; Quint, Bodo; Seibold, Gerd; Michlitsch, Kenneth J.; Ha, Suk-Woo; Eckert, Karl-Ludwig; Joergensen, Ib; Nielsen, Stevan, Apparatus for applying a compressive load on body tissue.
Cartledge,Richard G.; Lee,Leonard Y., Apparatus for implanting surgical devices for controlling the internal circumference of an anatomic orifice or lumen.
Stein Jeffrey A. ; Allen William J. ; Markus Richard L. ; Bachman Alan B. ; Bryan Deborah M. ; Holsten Henry E. ; DeFonzo Stephen A. ; Savage Robert C., Coil fastener applier.
Middleman Lee M. (Portola Valley CA) Pyka Walter R. (Redwood City CA) Buhler Michael (Madeira Beach FL) Poncet Philippe (Fremont CA) Van Dyk Karl (Fremont CA) Jervis James E. (Atherton CA) Zadno Reza, Device or apparatus for manipulating matter having a elastic ring clip.
Vidlund, Robert M.; Kalgreen, Jason E.; Mortier, Todd J.; Schweich, Jr., Cyril J.; Schroeder, Richard; Kusz, David, Devices and methods for heart valve treatment.
Spence, Paul A.; Baim, Donald S.; McNamara, Edward I.; Sugimoto, Hiroatsu; Call, Aaron M.; Cahalane, Steven D.; Maguire, Mark; Morrill, Richard J., Devices and methods for introducing elements into tissue.
Solem,Jan Otto; Kimblad,Per Ola; Fariabi,Sepehr; Schreck,Stefan; Adzich,Vaso; Iancea,Octavian, Devices and methods for percutaneous repair of the mitral valve via the coronary sinus.
Machold, Timothy R.; Chang, Robert T.; Macoviak, John A.; Rahdert, David A., Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools.
Mortier Todd J. ; Schweich ; Jr. Cyril J. ; Vidlund Robert M. ; Keith Peter T. ; Paulson Thomas M. ; Kusz David A., External stress reduction device and method.
VanTassel, Robert A.; Hauser, Robert G.; Schwartz, Robert; Holmes, David; Sutton, Gregg S.; Borillo, Thomas E.; Welch, Jeffrey, Filter apparatus for ostium of left atrial appendage.
Goldfarb, Eric A.; Raschdorf, Alfred H.; Sarabia, Jaime E.; Fan, Sylvia Wen-Chin; Dell, Kent D.; Komtebedde, Jan; Powell, Ferolyn T., Fixation devices for variation in engagement of tissue.
Goldfarb, Eric A.; Raschdorf, Alfred H.; Sarabia, Jaime E.; Erickson, Sylvia Wen-Chin; Dell, Kent D.; Komtebedde, Jan; Powell, Ferolyn T., Fixation devices, systems and methods for engaging tissue.
Goldfarb, Eric A.; Raschdorf, Jr., Alfred H.; Sarabia, Jaime E.; Wen Chin Fan, Sylvia; Dell, Kent D.; Komtebedde, Jan; Powell, Ferolyn T., Fixation devices, systems and methods for engaging tissue.
Goldfarb, Eric A.; Raschdorf, Jr., Alfred H.; Sarabia, Jaime E.; Wen Chin Fan, Sylvia; Dell, Kent D.; Komtebedde, Jan; Powell, Ferolyn T., Fixation devices, systems and methods for engaging tissue.
Goldfarb, Eric A.; Raschdorf, Jr., Alfred H.; Sarabia, Jaime E.; Wen Chin Fan, Sylvia; Dell, Kent D.; Komtebedde, Jan; Powell, Ferolyn T., Fixation devices, systems and methods for engaging tissue.
William N. Aldrich ; Michael V. Morejohn ; Richard A. Helkowski ; Ivan Sepetka, Instruments and methods employing thermal energy for the repair and replacement of cardiac valves.
Donlon, Brian S.; Peters, William S.; Garrison, Michi E.; Rosenman, Daniel C.; Stevens, John H., Lens-invasive devices and methods for cardiac valve surgery.
Goble E. Marlowe (Logan UT) Luman David P. (Logan UT) Chervitz Alan (Logan UT) Story C. Brad (Liberty UT) Gundlalpalli Ramarao (Logan UT), Ligament bone anchor and method for its use.
Warren P. Williamson, IV ; Paul A. Spence ; George T. Chistakis CA; Mark Ortiz, Means and method of replacing a heart valve in a minimally invasive manner.
Paul, David; Sutton, Benjamin; McCollum, Brian; Brandt, Brian D.; Leung, Emma; Martin, Kenneth M.; Salahieh, Amr; Hildebrand, Daniel, Medical devices and delivery systems for delivering medical devices.
Northrup ; III William F. ; Northrup Joanne B., Method and apparatus for sizing, stabilizing and/or reducing the circumference of an anatomical structure.
Goldfarb, Eric A.; Deem, Mark E.; Dell, Kent D.; Dieck, Martin S.; Fan, Sylvia Wen Chin; Gifford, III, Hanson S.; Martin, Brain B.; Powell, Ferolyn T.; St. Goar, Frederick G., Methods and apparatus for cardiac valve repair.
Goldfarb, Eric A.; Deem, Mark E.; Dell, Kent D.; Dieck, Martin S.; Fan, Sylvia Wen-Chin; Gifford, III, Hanson S.; Martin, Brian B.; Powell, Ferolyn T.; St. Goar, Frederick G., Methods and apparatus for cardiac valve repair.
St. Goar, Frederick G.; Fann, James I-Lin; Deem, Mark E.; Gifford, III, Hanson S.; Dieck, Martin S.; Martin, Brian B.; Fan, Sylvia Wen-Chin; Goldfarb, Eric A.; Dell, Kent D.; Powell, Ferolyn T., Methods and apparatus for cardiac valve repair.
Goldfarb, Eric A.; Dell, Kent D.; Fan, Sylvia Wen Chin; Martin, Brian B.; Powell, Ferolyn T.; Raschdorf, Alfred H.; Thornton, Troy L., Methods and devices for capturing and fixing leaflets in valve repair.
Goldfarb, Eric A.; Dell, Kent D.; Fan, Sylvia Wen-Chin; Martin, Brian B.; Powell, Ferolyn T.; Raschdorf, Alfred H.; Thornton, Troy L., Methods and devices for capturing and fixing leaflets in valve repair.
Starksen, Niel F.; Im, Karl S.; Fabro, Mariel; Serina, Eugene; Meier, Anne T., Methods and devices for catheter advancement and delivery of substances therethrough.
McCarthy,Patrick M.; Schweich, Jr.,Cyril J.; Mortier,Todd J.; Keith,Peter T.; Kallok,Michael J., Methods and devices for improving cardiac function in hearts.
Patrick M. McCarthy ; Cyril J. Schweich, Jr. ; Todd J. Mortier ; Peter T. Keith ; Michael J. Kallok, Methods and devices for improving cardiac function in hearts.
Schroeder, Richard F.; Vidlund, Robert M.; Kalgreen, Jason E.; Schweich, Jr., Cyril J.; Mortler, Todd J., Methods and devices for improving mitral valve function.
Goldfarb, Eric A.; Thornton, Troy L.; Raschdorf, Alfred H.; Sarabia, Jaime E.; Maddan, John P.; Powell, Ferolyn; Martin, Brian B.; Wen Chin Fan, Sylvia; Komtebedde, Jan; Liao, Yen C., Methods and devices for tissue grasping and assessment.
Goldfarb, Eric A.; Thornton, Troy L.; Raschdorf, Alfred H.; Sarabia, Jaime E.; Maddan, John P.; Powell, Ferolyn; Martin, Brian B.; Wen-Chin Fan, Sylvia; Komtebedde, Jan; Liao, Yen C., Methods and devices for tissue grasping and assessment.
Stevens, John H.; Bolduc, Lee R.; Boyd, Stephen W.; Donlon, Brian S.; Gifford, III, Hanson S.; Houle, Philip R.; Rosenman, Daniel C., Minimally-invasive devices and methods for treatment of congestive heart failure.
Kuehn, Stephen T.; Hinnenkamp, Thomas F.; Holmberg, William R.; Bergman, Darrin J.; Moore, Scott D.; Shepherd, Terry L., Mitral and tricuspid valve repair.
Thornton, Troy L.; Martin, Brian B.; Raatikka, Amy R.; Liao, Yen C.; Kolosi, William D.; Lucatero, Pedro, Multi-catheter steerable guiding system and methods of use.
Tsukashima, Ross; Shaolian, Samuel M.; Buchbinder, Maurice; Gray, Brian C.; Packham, Victor S.; Cao, Hung H., Percutaneous transcatheter repair of heart valves.
Gardiner Barry N. ; McDonald Paul T. ; Phipps Richard D., Pinned retainer surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery.
Aranguren Duo Iker (Estraunza ; 10-60 Bilbao ESX), Process for installing mitral valves in their anatomical space by attaching cords to an artificial stent.
Sparer Randall V. ; Untereker Darrel F. ; Ebner Elizabeth A. ; Grailer Thomas P. ; Vegoe Brett R. ; Shim Hong S. ; Duran Carlos M. G., Rigid annuloplasty device that becomes compliant after implantation.
Traynor, Kate E.; Cahalane, Steven D.; McNamara, Edward I.; Meranda, Joseph A.; Modoono, Paul T.; Lane, Joseph P.; Call, Aaron M., Suture cutter and method of cutting suture.
Hirotsuka, Mark; Jackson, Jasper; Frazier, Andrew; Roue, Chad C.; van der Burg, Erik; Dineen, Michael, System and method for percutaneous glossoplasty.
Spence, Paul A.; Baim, Donald S.; McNamara, Edward I.; Sugimoto, Hiroatsu; Lane, Joseph P.; Lee, Christopher C.; Robinson, Jason H.; Call, Aaron M.; Morrill, Richard J., Systems and methods for introducing elements into tissue.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.