[미국특허]
Methods of melting feedstock using a submerged combustion melter
원문보기
IPC분류정보
국가/구분
United States(US) Patent
등록
국제특허분류(IPC7판)
C03B-005/235
F23C-003/00
F27B-003/20
F27B-003/22
F27B-001/08
F23D-014/22
출원번호
US-0854271
(2015-09-15)
등록번호
US-9982884
(2018-05-29)
발명자
/ 주소
Huber, Aaron Morgan
Faulkinbury, Albert Patrick
출원인 / 주소
Johns Manville
대리인 / 주소
Touslee, Robert D.
인용정보
피인용 횟수 :
0인용 특허 :
232
초록▼
Methods of maximizing mixing and melting in a submerged combustion melter (SCM) are described. One method includes melting an inorganic feedstock in an SCM using an arrangement of two or more submerged combustion (SC) burners, the SCM having a length (L) and a width (W), a centerline (C), a north si
Methods of maximizing mixing and melting in a submerged combustion melter (SCM) are described. One method includes melting an inorganic feedstock in an SCM using an arrangement of two or more submerged combustion (SC) burners, the SCM having a length (L) and a width (W), a centerline (C), a north side (N) and a south side (S), and operating the arrangement of SC burners such that a progressively higher percentage of a total combustion flow from the SC burners occurs from SC burners at progressively downstream positions in the SCM. Other methods include operating the N and S SC burners with more combustion flow than the central burners. Other methods include strategic placement of fuel lean SC burners and fuel rich SC burners.
대표청구항▼
1. A method of maximizing mixing and melting in a submerged combustion melter (SCM), the method comprising: (a) melting an inorganic feedstock in the SCM, the SCM having a length (L) and a width (W), a centerline (C), a north side (N) and a south side (S), using a matrix of at least two rows and at
1. A method of maximizing mixing and melting in a submerged combustion melter (SCM), the method comprising: (a) melting an inorganic feedstock in the SCM, the SCM having a length (L) and a width (W), a centerline (C), a north side (N) and a south side (S), using a matrix of at least two rows and at least two columns of submerged combustion (SC) burners wherein a row spans a majority of the width (W) and a column spans a majority of the length (L) of the SCM;(b) operating the matrix of SC burners such that a progressively higher percentage of a total combustion flow rate from the SC burners occurs from SC burners at progressively downstream positions; and(c) the SC burners on the N and S sides in a first row R1 operate at a rate r3, and the SC burners in the center (C) of the first row R1 operate at a rate r4, where r3>r4, and the SC burners on N and S sides in a second row R2 operate at a rate r5 and the SC burners in the center (C) of the second row R2 operate at a rate r6, where r5>r6≥r4 and r5>r3, wherein r3, r4, r5, and r6 are combustion flow rates. 2. A method of maximizing mixing and melting in a submerged combustion melter (SCM), the method comprising: (a) melting an inorganic feedstock in the SCM, the SCM having a length (L) and a width (W), a centerline (C), a north side (N) and a south side (S), using a matrix of at least two rows and at least two columns of submerged combustion (SC) burners wherein a row spans a majority of the width (W) and a column spans a majority of the length (L) of the SCM;(b) operating all SC burners for a first time period with equal percentage of the total combustion flow rate, adding a first amount at a first concentration of a tracer compound or element to the inorganic feedstock at a beginning of the first time period, measuring concentration of the tracer compound or element in melt exiting the SCM during the first time period;(c) after the first time period, operating all SC burners for a second time period equal to the first time period, adding a second amount equal to the first amount at the first concentration of the tracer compound or element to the inorganic feedstock at a beginning of the second time period, then measuring concentration of the tracer compound or element in melt exiting the SCM during the second time period to verify a decrease in the tracer compound or element concentration in the melt exiting the SCM at the end of the second time period indicating an increase in residence time of melt in the SCM during the second time period compared to the tracer compound or element concentration at the end of the first time period and residence time of the melt exiting the SCM at the end of the first time period when all SC burners were operating with equal percentage of the total combustion flow rate, operating the SC burners on the N and S sides in a first row R1 at a rate r3 during the second time period, operating the SC burners in the center (C) of the first row R1 at a rate r4 during the second time period, where r3>r4, operating the SC burners on N and S sides in a second row R2 at a rate r5 during the second time period, and operating the SC burners in the center (C) of the second row R2 at a rate r6 during the second time period, where r5>r6≥r4, and r5>r3, wherein r3, r4, r5, and r6 are combustion flow rates. 3. The method in accordance with claim 2 wherein the tracer compound or element is selected from the group consisting of ZnO (zinc oxide), SrCO3 (strontium carbonate), BaCO3 (barium carbonate), and Li2CO3 (lithium carbonate), and mixtures and combinations thereof.
Joshi Mahendra L. (Altamonte Springs FL) Nabors James K. (Apopka FL) Slavejkov Aleksandar G. (Allentown PA), Adjustable momentum self-cooled oxy/fuel burner for heating in high temperature environments.
Panz Eric (West Vancouver CAX) Panz Steven E. (North Vancouver CAX), Apparatus for cooling combustion chamber in a submerged combustion heating system.
Bhring Otto (Hrth DEX) Dreessen Gerardus J. W. (Vlissingen NLX) Groeneveld Jacob W. H. (Middelburg NLX) Queck Robert (Hrth DEX) Thome Heinrich (Kerpen-Trnich DEX) Willemsen Gerrit J. (Middelburg NLX), Arc furnace roof.
Watzke Eckhart,DEX ; Kampfer Andrea,DEX ; Brix Peter,DEX ; Ott Franz,DEX, Borosilicate glass of high chemical resistance and low viscosity which contains zirconium oxide and lithium oxide.
Bodelin Pierre,FRX ; Recourt Patrick,FRX ; Ougarane Lahcen,FRX, Combustion process and apparatus therefore containing separate injection of fuel and oxidant streams.
Philippe Louis C. ; Borders Harley A. ; Mulderink Kenneth A. ; Bodelin Pierre,FRX ; Recourt Patrick,FRX ; Ougarane Lahoen,FRX ; Tsiava Remi,FRX ; Dubi Bernard,FRX ; Rio Laurent,FRX, Combustion process and apparatus therefore containing separate injection of fuel and oxidant streams.
James G. Lunghofer ; Collins P. Cannon ; Trevor Pugh ; Randy Riggs ; M. David Landrum, Device and method for monitoring the condition of a thermocouple.
Crawford, Emmett Dudley; McWilliams, Douglas Stephens; Porter, David Scott; Connell, Gary Wayne, Film(s) and/or sheet(s) comprising polyester compositions which comprise cyclobutanediol and have a certain combination of inherent viscosity and moderate glass transition temperature.
Dumbaugh ; Jr. William H. (Painted Post NY) Lapp Josef C. (Corning NY) Moffatt Dawne M. (Corning NY), High liquidus viscosity glasses for flat panel displays.
Backderf Richard H. (Richfield OH) Donat Frank J. (Mantua OH), Low inherent viscosity-high glass transition temperature enhancing agents produced by mass reaction polymerization as an.
Turner S. Richard ; Sublett Bobby J. ; Connell Gary W., Low melt viscosity amorphous copolyesters with enhanced glass transition temperatures having improved gas barrier properties.
Kunkle Gerald E. (New Kensington PA) Welton Wright M. (Paw Paw WV) Schwenninger Ronald L. (Ridgeley WV), Melting and vacuum refining of glass or the like and composition of sheet.
Joshi Mahendra L. (Altamonte Springs FL) Broadway Lee (Eustis FL) Mohr Patrick J. (Mims FL), Method and apparatus for injecting fuel and oxidant into a combustion burner.
Slavejkov Aleksandar G. (Allentown PA) Gosling Thomas M. (Bethlehem PA) Knorr ; Jr. Robert E. (Allentown PA), Method and device for low-NOx high efficiency heating in high temperature furnaces.
Jeanvoine, Pierre; Massart, Tanguy; Cuartas, Ramon Rodriguez; Rodriguez, Armando Rodriguez; Hernandez, Juan Andres Nunez, Method and device for melting and refining materials capable of being vitrified.
Zippe Bernd H. (Kreuzwertheim DEX) Weis Erich (Rauenberg DEX) Leichtenschlag Hilmar (Eichenbuhl DEX), Method and heat-exchanger for preheating broken glass and glass-batching melt-goods or similar bulk goods using a heatin.
Laurent Francois (1 ; montee Notre Dame 35400 Saint Malo FRX), Method and installation for improving the efficiency of a submerged-combustion heating installation.
Joshi Mahendra L. ; Borders Harley A. ; Charon Olivier, Method and system for increasing the efficiency and productivity of a high temperature furnace.
Swaelens Bart (Putte BEX) Pauwels Johan (Bornem BEX) Vancraen Wilfried (Huldenberg BEX), Method for supporting an object made by means of stereolithography or another rapid prototype production method.
Gutmark, Ephraim; Paschereit, Christian Oliver, Method for the reduction of combustion-driven oscillations in combustion systems and premixing burner for carrying out the method.
Daman Lloyd W. (Pemberville OH) Hille Earl A. (Elmore OH) Shamp Donald E. (Millbury OH), Method of and apparatus for increasing the melting rate of glass making materials.
Neil George Simpson ; Greg Floyd Prusia ; Stephen McDonald Carney ; Thomas G. Clayton ; Andrew Peter Richardson ; John R. LeBlanc, Method of boosting a glass melting furnace using a roof mounted oxygen-fuel burner.
Simpson, Neil George; Prusia, Greg Floyd; Carney, Stephen McDonald; Clayton, Thomas G.; Richardson, Andrew Peter; LeBlanc, John R., Method of boosting a glass melting furnace using a roof mounted oxygen-fuel burner.
Kunkle Gerald E. (New Kensington PA) Demarest Henry M. (Natrona Heights PA) Shelestak Larry J. (Bairdford PA), Method of melting raw materials for glass or the like using solid fuels or fuel-batch mixtures.
Demarest ; Jr. Henry M. (Natrona Heights PA) Kunkle Gerald E. (New Kensington PA) Moxie Clement C. (Natrona Heights PA), Method of melting raw materials for glass or the like with staged combustion and preheating.
Gerutti Richard L. (Cumberland MD) Haskins David R. (Cumberland MD) Heithoff Robert B. (LeVale MD) Schwenninger Ronald L. (Ridgely MD) Welton Wright M. (Oldtown MD), Method of vacuum refining of glassy materials with selenium foaming agent.
Shock, Jeffrey M; Charbonneau, Mark William, Methods and systems for controlling bubble size and bubble decay rate in foamed glass produced by a submerged combustion melter.
Babel, Henry W.; Waldron, Douglas J.; de Jesus, Ronaldo Reyes; Bozich, William F., Methods of manufacture of spin-forming blanks, particularly for fabrication of rocket domes.
Barberree, Daniel A.; Cardenas, Jose E.; Transier, Lee; Zerafin, Rick, Mineral insulated metal sheathed cable connector and method of forming the connector.
Joshi Mahendra L. ; Jurcik ; Jr. Benjamin J.,FRX ; Simon Jean-Francois,BEX, Oxidizing oxygen-fuel burner firing for reducing NOx emissions from high temperature furnaces.
Joshi Mahendra L. ; Jurcik ; Jr. Benjamin J.,FRX ; Simon Jean-Francois,BEX, Oxidizing oxygen-fuel burner firing for reducing NOx emissions from high temperature furnaces.
Crawford, Emmett Dudley; Pecorini, Thomas Joseph; McWilliams, Douglas Stephens; Porter, David Scott; Connell, Gary Wayne, Polyester compositions containing cyclobutanediol having a certain combination of inherent viscosity and moderate glass transition temperature and articles made therefrom.
Jacques, Remi; Jeanvoine, Pierre; Palmieri, Biagio; Rattier, Melanie, Preparation of silicate or glass in a furnace with burners immersed in a reducing medium.
Rue,David M.; Abbasi,Hamid A.; Khinkis,Mark J.; Olabin,Vladimir M.; Maksymuk,Oleksandr, Process and apparatus for uniform combustion within a molten material.
Drogue Sophie (Paris FRX) Charon Olivier (Linas FRX) Duchateau Eric (Versailles FRX) ..AP: L\Air Liquide ; Societe Anonyme pour l\Etude et l\Exploitation des Procedes Georges Claude (Paris Cedex FRX , Process for combustion in an industrial furnace.
Backderf Richard H. (Richfield OH) Donat Frank J. (Mantua OH), Process for preparing low inherent viscosity-high glass transition agents as an overpolymer on polyvinyl chloride resins.
Charbonneau, Mark William; McHugh, Kevin Patrick, Process of using a submerged combustion melter to produce hollow glass fiber or solid glass fiber having entrained bubbles, and burners and systems to make such fibers.
Philippe Louis C. ; Borders Harley A. ; Mulderink Kenneth A. ; Bodelin Pierre,FRX ; Recourt Patrick,FRX ; Ougarane Lahcen,FRX ; Tsiava Remi,FRX ; Dubi Bernard,FRX ; Rio Laurent,FRX, Refractory block for use in a burner assembly.
Hull, Charles W.; Kulkarni, Rajeev; Mojdeh, Medhi; Wang, Hongqing V.; West, John Corbin, Region-based supports for parts produced by solid freeform fabrication.
LeBlanc John R. ; Khalil Alchalabi Rifat M. ; Baker David J. ; Adams Harry P. ; Hayward James K., Roof-mounted oxygen-fuel burner for a glass melting furnace and process of using the oxygen-fuel burner.
Joshi Mahendra L. ; Borders Harley A. ; Marin Ovidiu ; Charon Olivier, Self-cooled oxygen-fuel burner for use in high-temperature and high-particulate furnaces.
Joshi Mahendra L. ; Borders Harley A. ; Marin Ovidiu ; Charon Olivier, Self-cooled oxygen-fuel burner for use in high-temperature and high-particulate furnaces.
Joshi Mahendra L. ; Borders Harley A. ; Marin Ovidiu ; Charon Olivier, Self-cooled oxygen-fuel for use in high-temperature and high-particulate furnaces.
Charbonneau, Mark William, Submerged combustion melting processes for producing glass and similar materials, and systems for carrying out such processes.
Calcote Hartwell F. ; Berman Charles H., Submerged combustion process and apparatus for removing volatile contaminants from groundwater or subsurface soil.
Panz Eric (4715 Willow Creek West Vancouver CAX V7W 1C3 ) Panz Steven E. (3364 Fairmount Drive North Vancouver CAX V7R 2W6 ), Submerged combustion system.
Schendel Ronald L. (Manhattan Beach CA), Sulfur dioxide generation by submerged combustion and reduced thermal cycling by use of a hot recycle of sulfur.
Pecoraro George A. (Lower Burrell PA) Shelestak Larry J. (Bairdford PA) Cooper Joseph E. (Natrona Heights PA), Vacuum refining of glassy materials with selected water content.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.