A variable volume induction nozzle is designed for use with a variable speed fan, where fan speed is adjusted in response to variable exhaust gas flow volume in order to conserve energy. In order to maintain a minimum exhaust discharge velocity to ensure adequate plume height, an axially-extendable,
A variable volume induction nozzle is designed for use with a variable speed fan, where fan speed is adjusted in response to variable exhaust gas flow volume in order to conserve energy. In order to maintain a minimum exhaust discharge velocity to ensure adequate plume height, an axially-extendable, upwardly tapered flow-impinging pod within the nozzle creates a variable annular nozzle outlet opening. As opposed to a circumferentially-constricted outlet opening, the variable annular outlet produces a uniform discharge velocity profile conducive to the induction of ambient air through a windband.
대표청구항▼
1. A variable volume induction nozzle for vertical connection to a fan outlet for an exhaust gas from a variable speed fan, the nozzle comprising: a nozzle wall, defining a nozzle plenum, which has a central longitudinal axis constituting a plenum axis, wherein the nozzle wall comprises a lower wall
1. A variable volume induction nozzle for vertical connection to a fan outlet for an exhaust gas from a variable speed fan, the nozzle comprising: a nozzle wall, defining a nozzle plenum, which has a central longitudinal axis constituting a plenum axis, wherein the nozzle wall comprises a lower wall section and an upper wall section, and and wherein the lower wall section terminates in a substantially circular nozzle exhaust inlet and the upper wall section terminates in a substantially circular nozzle discharge outlet, and wherein the nozzle exhaust inlet fluidly communicates with the fan outlet;an impinger pod, which is axially extendably disposed at an adjustable pod position within the nozzle plenum, wherein the impinger pod comprises a pod axis, consisting of a central longitudinal axis of the impinger pod, and wherein the pod axis is aligned, at each adjustable pod position, with the plenum axis, and wherein the impinger pod defines within the nozzle plenum, in conjunction with the nozzle wall, a variable annular effluent passageway for the exhaust gas, and wherein the impinger pod comprises an inwardly and upwardly conically tapered upper pod section, which terminates in a convex pod tip, in order to induce a laminar inflow of ambient air through a windband, and a lower pod section, and wherein the effluent passageway comprises an upper affluent passageway and a lower effluent passageway;wherein the impinger pod is vertically axially extendable, along the plenum axis, to a full pod extension, in which the pod tip maximally extends above the nozzle discharge outlet, and wherein the impinger pod is vertically axially retractable, along the plenum axis, to a full pod retraction, in which the pod tip does not extend above the nozzle discharge outlet or minimally extends above the nozzle discharge outlet, and wherein the impinger pod is vertically axially extendable and retractable to multiple intermediate pod positions, along the plenum axis, between the full pod extension and the full pod retraction; andwherein, when the impinger pod is at full pod retraction, the nozzle is in a fully open position, corresponding to a maximum flow of exhaust gas, with the fan operating at a maximum fan speed, and wherein, when the impinger pod is at full pod extension, the nozzle is in a fully closed position, corresponding to a minimum flow of exhaust gas, with the fan operating at a minimum fan speed, and wherein, when the impinger pod is at one of the intermediate pod positions, the nozzle is in an intermediate position, corresponding to an intermediate flow of exhaust gas, with the fan operating between the minimum fan speed and the maximum fan speed. 2. The nozzle of claim 1, wherein the nozzle wall has an upward wall taper, such that the nozzle wall tapers from the lower wall section to the upper wall section. 3. The nozzle of claim 2, wherein the lower wall section is tubular and the upper wall section is tapered frusto-conical. 4. The nozzle of claim 3, wherein the impinger pod has an upward pod taper, such that the impinger pod tapers from the lower pod section to the upper pod section. 5. The nozzle of claim 4, wherein the upward pod taper conforms to the upward wall taper. 6. The nozzle of claim 5, wherein the lower pod section is tubular, the upper pod section is substantially conical or frusto-conical, and the pod tip is rounded or hemispherical. 7. The nozzle of claim 6, wherein the upper effluent passageway has an annular convergence which is determined by the pod position, such that the annular convergence increases, and the upper effluent passageway narrows, as the impinger pod is adjusted from the full pod retraction to the full pod extension. 8. The nozzle of claim 7, wherein the pod position is adjustable by a linear actuator, which moves the lower pod section along a tubular guide sleeve between the full pod retraction and the full pod extension. 9. The nozzle of claim 8, further comprising one or more sensors and a central processing unit (CPU), wherein the CPU continuously or periodically activates the linear actuator to adjust the pod position, based upon one or more sensor readings. 10. The nozzle of claim 9, wherein the sensor readings comprise one or more of the following group: (i) flow velocity or velocity pressure of the exhaust gas at the nozzle discharge outlet, (ii) flow velocity or velocity pressure of the exhaust gas at the nozzle exhaust inlet, (iii) ambient cross-wind speed, and (iv) fan motor speed. 11. The nozzle of claim 5, wherein the upper effluent passageway has an annular convergence which is determined by the pod position, such that the annular convergence increases, and the upper effluent passageway narrows, as the impinger pod is adjusted from the full pod retraction to the full pod extension. 12. The nozzle of claim 11, wherein the pod position is adjustable by a linear actuator, which moves the lower pod section along a tubular guide sleeve between the full pod retraction and the full pod extension. 13. The nozzle of claim 12, further comprising one or more sensors and a central processing unit (CPU), wherein the CPU continuously or periodically activates the linear actuator to adjust the pod position, based upon one or more sensor readings. 14. The nozzle of claim 13, wherein the sensor readings comprise one or more of the following group: (i) flow velocity or velocity pressure of the exhaust gas at the nozzle discharge outlet, (ii) flow velocity or velocity pressure of the exhaust gas at the nozzle exhaust inlet, (iii) ambient cross-wind speed, and (iv) fan motor speed. 15. The nozzle according to any one of claims 1 through 10, further comprising a frusto-conical windband, which is attached in converging annular spaced relation to the nozzle wall, and which concentrically surrounds the nozzle discharge outlet, so as to define an upward-tapering frusto-conical windband exhaust passage, extending from a lower windband inlet opening to an upper windband outlet opening, such that a high velocity discharge of the exhaust gas from the nozzle discharge outlet induces an ambient air inflow upward through the windband exhaust passage.
Smith W. Christen (Terrace Park OH) McGill Terry J. (Cincinnati OH) Spangler Herbert L. (Bethel OH), Apparatus for discharging exhaust gas at high velocity.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.