[미국특허]
Liquid-solid sampling system for a loop slurry reactor
원문보기
IPC분류정보
국가/구분
United States(US) Patent
등록
국제특허분류(IPC7판)
C08F-210/14
B01J-019/24
C08F-002/01
C08F-002/14
G01N-001/20
C08F-210/08
C08F-010/00
C08F-010/02
출원번호
US-0623421
(2017-06-15)
등록번호
US-10040882
(2018-08-07)
발명자
/ 주소
Ege, Stephen L.
Romig, Ralph W.
출원인 / 주소
Chevron Phillips Chemical Company LP
대리인 / 주소
Merchant & Gould P.C.
인용정보
피인용 횟수 :
0인용 특허 :
118
초록
Polymerization reactor systems providing integrated liquid-solid sampling systems are disclosed. Methods for operating such polymerization reactor systems and for measuring a property of the liquid portion of liquid-solid mixture are described.
대표청구항▼
1. A process for operating a polymerization reactor system, the process comprising: (I) contacting a transition metal-based catalyst system with an olefin monomer and an optional olefin comonomer in a loop slurry reactor within the polymerization reactor system under polymerization reaction conditio
1. A process for operating a polymerization reactor system, the process comprising: (I) contacting a transition metal-based catalyst system with an olefin monomer and an optional olefin comonomer in a loop slurry reactor within the polymerization reactor system under polymerization reaction conditions to produce an olefin polymer, the loop slurry reactor containing a liquid-solid mixture;(II) measuring a property of the liquid in the loop slurry reactor via a method comprising the steps of: (i) withdrawing a sample of the liquid-solid mixture from the loop slurry reactor;(ii) flowing the sample of the liquid-solid mixture through a vertical settling tube;(iii) periodically stopping the flow of the sample of the liquid-solid mixture in the tube for a time period sufficient for the solid to settle to a bottom portion of the tube and for the liquid to occupy an upper portion of the tube;(iv) removing a small fraction of the liquid in the upper portion of the tube and transferring the small fraction of the liquid to an analytical instrument for measuring the property of the liquid, wherein the analytical instrument comprises a chromatograph, a spectrometer, or a combination thereof;(v) restoring flow through the tube; and(vi) returning an unused fraction of the sample of the liquid-solid mixture to the loop slurry reactor; and(III) when the property of the liquid in the loop slurry reactor has reached a predetermined level, adjusting a polymerization reaction condition. 2. The process of claim 1, wherein: the transition metal-based catalyst system is a chromium-based catalyst system, a Ziegler-Natta based catalyst system, a metallocene-based catalyst system, or a combination thereof;the olefin monomer comprises ethylene; andthe olefin comonomer comprises 1-butene, 1-hexene, 1-octene, or a combination thereof. 3. The process of claim 2, wherein the analytical instrument comprises a UV spectrometer. 4. The process of claim 2, wherein the analytical instrument comprises a Raman spectrometer. 5. The process of claim 2, wherein the analytical instrument comprises a gas chromatograph. 6. The process of claim 1, wherein the process further comprises a step of filtering the small fraction prior to the analytical instrument. 7. The process of claim 1, wherein the property of the liquid is at least one of an amount of olefin monomer present in the liquid, an amount of olefin comonomer present in the liquid, an amount of hydrogen present in the liquid, an amount of a catalyst system component present in the liquid, and an amount of olefin polymer present in the liquid. 8. The process of claim 1, wherein: the time period is from about 15 sec to about 2 min;a density difference between the solid and the liquid is in a range from about 0.2 g/cc to about 1 g/cc;the small fraction of the liquid is less than 5 mL;the small fraction contains less than 1 wt. % solids; andthe amount of the small fraction is less than 2 wt. %, based on the total amount of the liquid-solid mixture in the settling tube. 9. A dual reactor polymerization system comprising: (A) two polymerization reactors in series configured to contact a transition metal-based catalyst system with an olefin monomer and an optional olefin comonomer under polymerization reaction conditions to produce an olefin polymer, where at least one of the two polymerization reactors is a loop slurry reactor; and(B) a liquid-solid sampling system comprising: (a) an inlet valve and an inlet pipe for withdrawing a liquid-solid mixture from the loop slurry reactor;(b) a vertical settling tube downstream of the inlet pipe, the tube configured to segregate the solid to a bottom portion of the tube and for the liquid to occupy an upper portion of the tube;(c) an outlet valve and an outlet pipe for returning an unused fraction of the liquid-solid mixture to the loop slurry reactor, the outlet pipe downstream of the tube;(d) a sample valve and a sample pipe, the sample valve positioned at the upper portion of the tube and configured to withdraw a small fraction of the liquid in the upper portion of the tube;(e) an analytical instrument downstream of the sample pipe, the analytical instrument configured to measure a property of the liquid; anda controller (f1) configured to open the inlet valve and the outlet valve to permit flow of the liquid-solid mixture from the loop slurry reactor, through the inlet pipe and the tube, and returning to the loop slurry reactor through the outlet pipe; and (f2) configured to periodically stop flow of the liquid-solid mixture by closing the inlet valve and the outlet valve for a time period sufficient for the solid to settle to the bottom portion of the tube and for the liquid to occupy the upper portion of the tube, and subsequently opening the sample valve to withdraw the small fraction of the liquid. 10. The system of claim 9, wherein the system comprises one loop slurry reactor and one gas phase reactor or one solution reactor. 11. The system of claim 9, wherein the system comprises two loop slurry reactors in series. 12. The system of claim 11, wherein at least one of the two loop slurry reactors operates under supercritical polymerization reaction conditions. 13. The system of claim 11, wherein: the liquid-solid sampling system is configured to withdraw the liquid-solid mixture from an upstream loop slurry reactor of the two loop slurry reactors in series; andthe property of the liquid in the upstream loop slurry reactor is at least one of an amount of olefin monomer present in the liquid, an amount of olefin comonomer present in the liquid, an amount of hydrogen present in the liquid, an amount of a catalyst system component present in the liquid, and an amount of olefin polymer present in the liquid. 14. The system of claim 11, wherein: the liquid-solid sampling system is configured to withdraw the liquid-solid mixture from a downstream loop slurry reactor of the two loop slurry reactors in series; andthe property of the liquid in the downstream loop slurry reactor is at least one of an amount of olefin monomer present in the liquid, an amount of olefin comonomer present in the liquid, an amount of hydrogen present in the liquid, an amount of a catalyst system component present in the liquid, and an amount of olefin polymer present in the liquid. 15. The system of claim 11, wherein: the time period is from about 15 sec to about 2 min;a density difference between the solid and the liquid is in a range from about 0.2 g/cc to about 1 g/cc;the small fraction of the liquid is less than 5 mL;the small fraction contains less than 1 wt. % solids; andthe amount of the small fraction is less than 2 wt. %, based on the total amount of the liquid-solid mixture in the settling tube. 16. The system of claim 9, wherein the inlet pipe and the outlet pipe are positioned on opposite ends of the vertical settling tube. 17. A method for measuring a property of a liquid in a vessel containing a liquid-solid mixture, the method comprising: (i) withdrawing a sample of the liquid-solid mixture from the vessel;(ii) flowing the sample of the liquid-solid mixture through a vertical settling tube;(iii) periodically stopping the flow of the sample of the liquid-solid mixture in the tube for a time period sufficient for the solid to settle to a bottom portion of the tube and for the liquid to occupy an upper portion of the tube;(iv) removing a small fraction of the liquid in the upper portion of the tube and transferring the small fraction of the liquid to an analytical instrument for measuring the property of the liquid;(v) restoring flow through the tube; and(vi) returning an unused fraction of the sample of the liquid-solid mixture to the vessel;wherein a density difference between the solid and the liquid is in a range from about 0.1 g/cc to about 3 g/cc. 18. The method of claim 17, wherein: the time period is from about 1 sec to about 5 min; andthe density difference between the solid and the liquid is in a range from about 0.2 g/cc to about 1 g/cc. 19. The method of claim 17, wherein: the small fraction of the liquid is less than 10 mL;the small fraction contains less than 2 wt. % solids; andthe amount of the small fraction is less than 5 wt. %, based on the total amount of the liquid-solid mixture in the settling tube. 20. A liquid-solid sampling system comprising: (a) an inlet valve and an inlet pipe for withdrawing a liquid-solid mixture from a vessel;(b) a vertical settling tube downstream of the inlet pipe, the tube configured to segregate the solid to a bottom portion of the tube and for the liquid to occupy an upper portion of the tube;(c) an outlet valve and an outlet pipe for returning an unused fraction of the liquid-solid mixture to the vessel, the outlet pipe downstream of the tube;(d) a sample valve and a sample pipe, the sample valve positioned at the upper portion of the tube and configured to withdraw a small fraction of the liquid in the upper portion of the tube;(e) an analytical instrument downstream of the sample pipe, the analytical instrument configured to measure a property of the liquid; anda controller (f1) configured to open the inlet valve and the outlet valve to permit flow of the liquid-solid mixture from the vessel, through the inlet pipe and the tube, and returning to the vessel through the outlet pipe; and (f2) configured to periodically stop flow of the liquid-solid mixture by closing the inlet valve and the outlet valve for a time period sufficient for the solid to settle to the bottom portion of the tube and for the liquid to occupy the upper portion of the tube, and subsequently opening the sample valve to withdraw the small fraction of the liquid. 21. The system of claim 20, wherein the liquid-solid mixture is a slurry of solids in a liquid diluent. 22. The system of claim 20, wherein: the time period is from about 1 sec to about 5 min; anda density difference between the solid and the liquid is in a range from about 0.1 g/cc to about 3 g/cc. 23. The system of claim 20, wherein: the small fraction of the liquid is less than 10 mL;the small fraction contains less than 2 wt. % solids; andthe amount of the small fraction is less than 5 wt. %, based on the total amount of the liquid-solid mixture in the settling tube. 24. The system of claim 20, wherein the inlet pipe and the outlet pipe are positioned on opposite ends of the vertical settling tube.
McDaniel Max P. (Bartlesville OK) Johnson Marvin M. (Bartlesville OK), Acid gelling aluminum phosphate from concentrated mass and catalyst containing same.
McDaniel, Max P.; Yang, Qing; Crain, Tony R.; Collins, Kathy S., Activator supports impregnated with group VIII transition metals for polymer property control.
Hottovy John D. (Bartlesville OK) Lawrence Frederick C. (Bartlesville OK) Lowe Barry W. (Bartlesville OK) Fangmeier James S. (Bartlesville OK), Apparatus and method for producing ethylene polymer.
McDaniel Max P. ; Benham Elizabeth A. ; Martin Shirley J. ; Collins Kathy S. ; Smith James L. ; Hawley Gil R. ; Wittner Christopher E. ; Jensen Michael D., Compositions that can produce polymers.
McDaniel Max P. ; Collins Kathy S. ; Johnson Marvin M. ; Smith James L. ; Benham Elizabeth A. ; Hawley Gil R. ; Wittner Christopher E. ; Jensen Michael D., Compositions that can produce polymers.
McDaniel, Max P.; Benham, Elizabeth A.; Martin, Shirley J.; Collins, Kathy S.; Smith, James L.; Hawley, Gil R.; Wittner, Christopher E.; Jensen, Michael D., Compositions that can produce polymers.
Frey Krisztina (Bayreuth DEX) von Massow Gabriele (Bayreuth DEX) Alt Helmut G. (Bayreuth DEX) Welch M. Bruce (Bartlesville OK), Cyclopentadienyl-type ligands, metallocenes, catalyst systems, preparation, and use.
Yang, Qing; Jayaratne, Kumudini C.; Jensen, Michael D.; McDaniel, Max P.; Martin, Joel L.; Thorn, Matthew G.; Lanier, Jerry T.; Crain, Tony R., Dual metallocene catalysts for polymerization of bimodal polymers.
McDaniel Max P. (Bartlesville OK) Klendworth Douglas D. (Westchester OH) Johnson Marvin M. (Bartlesville OK), Fluorided aluminas, catalysts, and polymerization processes.
McDaniel Max P. (Bartlesville OK) Klendworth Douglas D. (Westchester OH) Johnson Marvin M. (Bartlesville OK), Fluorided aluminas, catalysts, and polymerization processes.
Hottovy John D. ; Hensley Harvey D. ; Przelomski David J. ; Cymbaluk Teddy H. ; Franklin ; III Robert K. ; Perez Ethelwoldo P., High solids slurry polymerization.
McDaniel Max P. (Bartlesville OK) Klendworth Douglas (Bartlesville OK) Norwood Donald D. (Bartlesville OK) Hsieh Eric T. (Bartlesville OK) Boggs Elizabeth A. (Bartlesville OK), In situ comonomer generation in olefin polymerization.
McDaniel Max P. (Bartlesville OK) Klendworth Douglas (Bartlesville OK) Norwood Donald D. (Bartlesville OK) Hsieh Eric T. (Bartlesville OK) Boggs Elizabeth A. (Bartlesville OK), In situ comonomer generation in olefin polymerization.
Ayres C. A. (Bartlesville OK) Scott ; Jr. John N. (McLean VA) Sherk Fred T. (Tokyo JPX), Loop reactor settling leg system for separation of solid polymers and liquid diluent.
Geerts Rolf L. (Bartlesville OK) Palackal Syriac J. (Bartlesville OK) Pettijohn Ted M. (Bartlesville OK) Infield Robert M. (Barnsdall OK), Metallocene catalyst systems, preparation, and use.
Welch M. Bruce (Bartlesville OK) Alt Helmut G. (Bayreuth DEX) Peifer Bernd (Bayreuth DEX), Metallocene compounds and preparation thereof containing terminal alkynes.
Alt Helmut G. (Bayreuth DEX) Patsidis Konstantinos (Bayreuth OK DEX) Welch M. Bruce (Bartlesville OK) Geerts Rolf L. (Bartlesville OK) Peifer Bernd (Bayreuth OK DEX) Palackal Syriac J. (Bartlesville , Metallocenes and processes therefor and therewith.
Welch M. Bruce (Bartlesville OK) Alt Helmut G. (Bayreuth DEX) Peifer Bernd (Bayreuth OK DEX) Palackal Syriac J. (Bartlesville OK) Glass Gary L. (Dewey OK) Pettijohn Ted M. (Bartlesville OK) Hawley Gi, Method for making and using a supported metallocene catalyst system.
Zenk Roland (Bayreuth DEX) Alt Helmut G. (Bayreuth OK DEX) Welch M. Bruce (Bartlesville OK) Palackal Syriac J. (Bartlesville OK), Method for preparing cyclopentadienyl-type ligands and metallocene compounds.
Murray, Rex E.; Jayaratne, Kumudini C.; Yang, Qing; Martin, Joel L.; Glass, Gary L., Nano-linked heteronuclear metallocene catalyst compositions and their polymer products.
Mitchell Kent E. (Bartlesville OK) McDaniel Max P. (Bartlesville OK) Welch M. Bruce (Bartlesville OK) Benham Elizabeth A. (Bartlesville OK) Cone Grover W. (Bartlesville OK) ..AP: Phillips Petroleum C, Olefin polymerization.
Stacy Elizabeth M. (Bartlesville OK) Welch M. Bruce (Bartlesville OK) Martin Shirley J. (Bartlesville OK) McDaniel Max P. (Bartlesville OK) Pierce Dale E. (Bartlesville OK), Olefin polymerization.
McDaniels Max P. (Bartlesville OK) Johnson Marvin M. (Bartlesville OK), Olefin polymerization using chromium on an aluminum phosphate produced from a concentrated mass.
Palackal Syriac J. (Bartlesville OK) Alt Helmut G. (Bayreuth DEX) Patsidis Konstantinos (Bayreuth OH DEX) Hill Tara G. (Fairfield OH) Hawley Gil R. (Dewey OK) Chu Peter P. (Bartlesville OK) Welch M. , Olefin polymerization using silyl-bridged metallocenes.
McDaniel, Max P.; Johnson, Marvin M.; Randolph, Bruce B.; Collins, Kathy S.; Benham, Elizabeth A.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst composition.
Collins, Kathy S.; Palackal, Syriac J.; McDaniel, Max P.; Jensen, Michael D.; Hawley, Gil R.; Farmer, Kenneth R.; Wittner, Christopher E.; Benham, Elizabeth A.; Eaton, Anthony P.; Martin, Joel L., Organometal catalyst compositions.
Max P. McDaniel ; James B. Kimble ; Kathy S. Collins ; Elizabeth A. Benham ; Michael D. Jensen ; Gil R. Hawley ; Joel L. Martin, Organometal catalyst compositions.
Max P. McDaniel ; Kathy S. Collins ; Anthony P. Eaton ; Elizabeth A. Benham ; Michael D. Jensen ; Joel L. Martin ; Gil R. Hawley, Organometal catalyst compositions.
Max P. McDaniel ; Kathy S. Collins ; James L. Smith ; Elizabeth A. Benham ; Marvin M. Johnson ; Anthony P. Eaton ; Michael D. Jensen ; Joel L. Martin ; Gil R. Hawley, Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Benham, Elizabeth A.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R.; Hsieh, Eric T., Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Eaton, Anthony P.; Benham, Elizabeth A.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions.
McDaniel, Max P.; Shveima, Joseph S.; Smith, James L.; Collins, Kathy S.; Benham, Elizabeth A.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Benham, Elizabeth A.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions with solid oxide supports treated with fluorine and boron.
Max P. McDaniel ; Kathy S. Collins ; Anthony P. Eaton ; Elizabeth A. Benham ; Joel L. Martin ; Michael D. Jensen ; Gil R. Hawley, Organometal compound catalyst.
McDaniel, Max P.; Collins, Kathy S.; Hawley, Gil R.; Jensen, Michael D.; Benham, Elizabeth A.; Eaton, Anthony P.; Martin, Joel L.; Wittner, Christopher E., Organometal compound catalyst.
McDaniel, Max P.; Collins, Kathy S.; Hawley, Gil R.; Jensen, Michael D.; Wittner, Christopher E.; Benham, Elizabeth A.; Eaton, Anthony P.; Martin, Joel L.; Rohlfing, David C.; Yu, Youlu, Organometal compound catalyst.
Alt Helmut G. (Bayreuth DEX) Palackal Syriac J. (Bartlesville OK) Zenk Roland (Bayreuth DEX) Welch M. Bruce (Bartlesville OK) Schmid Michael (Bayreuth DEX), Organometallic fluorenyl compounds and use thereof in an alpha-olefin polymerization process.
Alt Helmut G. (Bayreuth DEX) Hawley Gil R. (Dewey OK) Smith Paul D. (Seabrook TX) Palackal Syriac J. (Bartlesville OK) Schmid Michael (Bayreuth DEX) Welch M. Bruce (Bartlesville OK) Patsidis Konstant, Organometallic fluorenyl compounds and use thereof in olefin polymerization.
Alt Helmut G. (Bayreuth DEX) Palackal Syriac J. (Bayreuth DEX) Patsidis Konstantinos (Bayreuth OK DEX) Welch M. Bruce (Bartlesville OK) Geerts Rolf L. (Bartlesville OK) Hsieh Eric T. (Bartlesville OK, Organometallic fluorenyl compounds, preparation, and use.
Hawley, Gil R.; McDaniel, Max P.; Wittner, Christopher E.; Jensen, Michael D.; Martin, Joel L.; Benham, Elizabeth A.; Eaton, Anthony P.; Collins, Kathy S., Polymerization catalysts.
Martin,Joel L.; Thorn,Matthew G.; McDaniel,Max P.; Jensen,Michael D.; Yang,Qing; DesLauriers,Paul J.; Kertok,Mark E., Polymerization catalysts and process for producing bimodal polymers in a single reactor.
Yang,Qing; Jensen,Michael D.; Thorn,Matthew G.; McDaniel,Max P.; Martin,Joel L.; Crain,Tony R., Polymerization catalysts for producing high melt index polymers without the use of hydrogen.
Yang, Qing; Jensen, Michael D.; Martin, Joel L.; Thorn, Matthew G.; McDaniel, Max P.; Yu, Youlu; Rohlfing, David C., Polymerization catalysts for producing high molecular weight polymers with low levels of long chain branching.
McDaniel Max P. (Bartlesville OK) Johnson Marvin M. (Bartlesville OK), Polymerization process using catalysts with acid gelled aluminum phosphate base.
McDaniel, Max P.; Collins, Kathy S.; Smith, James L.; Benham, Elizabeth A.; Johnson, Marvin M.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Polymerization process utilizing organometal catalyst compositions and the polymer produced thereby.
McDaniel Max P. (Bartlesville OK) Smith Paul D. (Seabrook TX) Norwood Donald D. (Bartlesville OK), Polymerization with surface silicated and fluorided alumina supported chromium.
Bhandarkar, Maruti; Benham, Elizabeth A; Gonzales, Rebecca A.; Kufeld, Scott E.; Mutchler, Joel A; Gill, Catherine M.; Nguyen, Thanh T.; Odi, Timothy O., Polyolefin production with different diluents in multiple polymerization reactors.
Hanson Donald O. (Bartlesville OK), Process and apparatus for separating diluents from solid polymers utilizing a two-stage flash and a cyclone separator.
Benham Elizabeth A. (Bartlesville OK) McDaniel Max P. (Bartlesville OK), Process for making bimodal polyolefins using two independent particulate catalysts.
Martin Shirley J. (Bartlesville OK) Benham Elizabeth A. (Bartlesville OK) McDaniel Max P. (Bartlesville OK) Gerhold Bruce W. (Bartlesville OK), Process for olefin polymerization.
Frey Krisztina (Bayreuth DEX) von Massow Gabriele (Bayreuth DEX) Alt Helmut G. (Bayreuth DEX) Welch M. Bruce (Bartlesville OK), Process for preparing cyclopentadienyl-type ligands.
Max P. McDaniel ; Anthony P. Eaton ; Elizabeth A. Benham ; Shawn R. Kennedy ; Ashish M. Sukhadia ; Rajendra K. Krishnaswamy ; Kathy S. Collins, Process for producing a polymer composition.
Welch M. Bruce (Bartlesville OK) Geerts Rolf L. (Bartlesville OK) Palackal Syriac J. (Bartlesville OK) Pettijohn Ted M. (Marshall TX), Process for producing broad molecular weight polyolefin.
McDaniel, Max P.; Benham, Elizabeth A.; Martin, Shirley J.; Collins, Kathy S.; Smith, James L.; Hawley, Gil R.; Wittner, Christopher E.; Jensen, Michael D., Process for producing polymers.
McDaniel Max P. ; Collins Kathy S. ; Johnson Marvin M. ; Smith James L. ; Benham Elizabeth A. ; Hawley Gil R. ; Wittner Christopher E. ; Jensen Michael D., Process for producing polymers using a composition comprising an organometal compound, a treated solid oxide compound, and an organoaluminum compound.
Alt Helmut G. (Bayreuth DEX) Patsidis Konstantinos (Bayreuth DEX) Welch M. Bruce (Bartlesville OK) Chu Peter P. (Bartlesville OK), Process of polymerizing olefins using diphenylsilyl or dimethyl tin bridged 1-methyl fluorenyl metallocenes.
Martin,Joel L.; Benham,Elizabeth A.; Kertok,Mark E.; Jensen,Michael D.; McDaniel,Max P.; Hawley,Gil R.; Yang,Qing; Thorn,Matthew G.; Sukhadia,Ashish M., Resins that yield low haze films and the process for their production.
McDaniel Max P. (Bartlesville OK) Smith Paul D. (Bartlesville OK) Norwood Donald D. (Bartlesville OK), Silicon and fluorine-treated alumina containing a chromium catalyst and method of producing same.
Knudsen Ronald D. (Bartlesville OK) McDaniel Max P. (Bartlesville OK) Boggs Elizabeth A. (Bartlesville OK) Bailey F. Wallace (Bartlesville OK), Twice-aged porous inorganic oxides, catalysts, and polymerization processes.
Alt Helmut G. (Bayreuth DEX) Palackal Syriac J. (Bartlesville OK) Patsidis Konstantinos (Berlin DEX) Welch M. Bruce (Bartlesville OK) Geerts Rolf L. (Bartlesville OK) Hsieh Eric T. (Bartlesville OK) , Unbridged metallocenes of 9-substituted fluorenyl compounds and use thereof.
Patsidis Konstantinos (Bayreuth DEX) Peifer Bernd (Bayreuth DEX) Palackal Syriac J. (Bartlesville OK) Alt Helmut G. (Bayreuth DEX) Welch M. Bruce (Bartlesville OK) Geerts Rolf L. (Bartlesville OK) Fa, Vinly-substituted bridged metallocenes.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.