[미국특허]
Power source element detection and monitoring
원문보기
IPC분류정보
국가/구분
United States(US) Patent
등록
국제특허분류(IPC7판)
B60L-011/00
B60R-016/04
B60R-016/033
B64C-039/02
출원번호
US-0653009
(2017-07-18)
등록번호
US-10220802
(2019-03-05)
발명자
/ 주소
Hoareau, Guillaume
Liebenberg, Johannes J.
Musial, John G.
Whitman, Todd R.
출원인 / 주소
International Business Machines Corporation
대리인 / 주소
Schmeiser, Olsen & Watts
인용정보
피인용 횟수 :
0인용 특허 :
18
초록▼
An apparatus and method for replacing a power source element is provided. The apparatus includes a multiple compartment housing attached to a vehicle, power source elements, a controller, and a communications interface. The power source elements are placed within receptacles of the multiple compartm
An apparatus and method for replacing a power source element is provided. The apparatus includes a multiple compartment housing attached to a vehicle, power source elements, a controller, and a communications interface. The power source elements are placed within receptacles of the multiple compartment housing. Each power source element is electrically connected to an input power coupler for electrical connection to the vehicle such that each power source element is configured to supply power to the vehicle independently without requiring power supplied by any other power source element. The controller is configured to monitor a power level of each power source element and generate an associated power level reading. The communication interface is configured to retrieve each associated power level reading from the controller and to an external system.
대표청구항▼
1. A vehicle power source apparatus comprising: a multiple compartment housing comprising a plurality of receptacles configured to retain power source elements for supplying power to a vehicle, wherein said multiple compartment housing is physically attached to said vehicle, wherein said multiple co
1. A vehicle power source apparatus comprising: a multiple compartment housing comprising a plurality of receptacles configured to retain power source elements for supplying power to a vehicle, wherein said multiple compartment housing is physically attached to said vehicle, wherein said multiple compartment housing comprises alignment guide holes for aligning, via a tapered pin alignment method, said multiple compartment housing with an additional multiple compartment housing, comprising tapered pins, of an additional vehicle via a docking process occurring during operation of said vehicle and said additional vehicle;a plurality of power source elements residing within a plurality of power source capsules, wherein said plurality of power source elements residing within said plurality of power source capsules are placed within said plurality of receptacles, wherein each power source capsule of said plurality of power source capsule comprises an O-ring seal for creating a weather proof seal when each said power source capsule is locked into place within said plurality of receptacles, wherein each power source element of said plurality of power source elements is independently electrically connected, through a power source capsule of said plurality of power source capsules, to an input power coupler for independent electrical connection to said vehicle such that each said power source element or grouping of power source elements of said plurality of power source elements is configured to supply power to said vehicle independently without requiring power supplied by any other power source element of said plurality of power source elements, wherein each said power source capsule comprises a conical shape for placement within an associated receptacle of said plurality of receptacles, wherein each said power source capsule comprises a first conical portion electro-magnetically connected to a second conical portion, wherein said first conical portion comprises a first mechanical actuator, wherein said second conical portion comprises a second mechanical actuator, and wherein each said first mechanical actuator and each said second mechanical actuator comprises a piston mechanism configured to automatically move each said power source capsule in multiple directions for removing each said power source capsule from an associated receptacle of said plurality of receptacles for replacement; anda controller connected to said plurality of power source elements, wherein said controller is configured to monitor a power level of each said power source element and generate a power level reading for each said power level, wherein said controller is further configured to determine, based on each said power level, an order for replacement of each said power source element, wherein said controller is coupled to a communication interface connected to an external system, wherein said communication interface is configured to retrieve each said power level reading and said order for replacement from said controller and transmit each said power level reading and said order for replacement to said external system, and wherein at least one power source element of said plurality of power source elements is replaced based on each said power level reading and said order for replacement with another power source element supplied by said additional multiple compartment housing during said docking process occurring during said operation of said vehicle and said additional vehicle. 2. The vehicle power source apparatus of claim 1, wherein said multiple compartment housing further comprises a charge strength percentage indicator connected to each said power source element in each said receptacle, and wherein each said charge strength percentage indicator is configured to present a current charge level percentage reading for each said power source element. 3. The vehicle power source apparatus of claim 1, wherein said controller is further configured to generate replacement data specifying a replacement history of each said power source element, and wherein said order for replacement of each said power source element is further based on said replacement data. 4. The vehicle power source apparatus of claim 1, wherein said controller is further configured generate discharge data specifying a rate of power discharge for each said power source element, and wherein said order for replacement of each said power source element is further based on said discharge data. 5. The vehicle power source apparatus of claim 1, further comprising: a global positioning satellite (GPS) receiver communicatively connected to said controller, wherein said GPS receiver is configured to receive geographical coordinates from a satellite, and wherein said controller is further configured to determine, based on said geographical coordinates, a current location for said vehicle power source apparatus. 6. The vehicle power source apparatus of claim 5, wherein said controller is further configured to determine a replacement requirement action for replacing each said power source element based on a remaining power charge level percentage determined from said charge level reading, and wherein said communication interface is further configured to transmit a message, to said external system, indicating said replacement requirement action. 7. The vehicle power source apparatus of claim 6, wherein said controller is further configured to determine a current location for a power source element replacement location for replacing each said power source. 8. The vehicle power source apparatus of claim 7, wherein said current location for said power source replacement location is determined based on said current location for said vehicle power source apparatus and a predicted range for said vehicle power source apparatus and said plurality of power sources with respect to said current location for said power source replacement location. 9. The vehicle power source apparatus of claim 8, wherein said controller is further configured to determine an estimated time of arrival for said vehicle power source apparatus arriving at said power source replacement element based on said predicted range. 10. The vehicle power source apparatus of claim 1, wherein each said power source element comprises a battery or a fuel cell. 11. The vehicle power source apparatus of claim 1, wherein said vehicle is selected from the group consisting of an air based vehicle, a land based vehicle, and marine based vehicle. 12. The vehicle power source apparatus of claim 1, wherein said vehicle does not require a human operator to be located within said vehicle. 13. A vehicle power source replacement method comprising: supplying, by a plurality of power sources elements residing within a plurality of power source capsules retained within a plurality of receptacles of a multiple compartment housing of a vehicle power source apparatus, power to a vehicle, wherein each power source capsule of said plurality of power source capsule comprises an O-ring seal for creating a weather proof seal when each said power source capsule is locked into place within said plurality of receptacles, wherein said multiple compartment housing is configured to be physically attached to said vehicle, wherein said multiple compartment housing comprises alignment guide holes for aligning, via a tapered pin alignment method, said multiple compartment housing with an additional multiple compartment housing, comprising tapered pins, of an additional vehicle via a docking process occurring during operation of said vehicle and said additional vehicle, wherein each power source element of said plurality of power source elements is independently electrically connected, through a power source capsule of said plurality of power source capsules, to an input power coupler for independent electrical connection to said vehicle such that each said power source element or grouping of power source elements of said plurality of power source elements is configured to supply power to said vehicle independently without requiring power supplied by any other power source element of said plurality of power sources, wherein each said power source capsule comprises a conical shape for placement within an associated receptacle of said plurality of receptacles, wherein each said power source capsule comprises a first conical portion electro-magnetically connected to a second conical portion, wherein said first conical portion comprises a first mechanical actuator, wherein said second conical portion comprises a second mechanical actuator, and wherein each said first mechanical actuator and each said second mechanical actuator comprises a piston mechanism configured to automatically move each said power source capsule in multiple directions for removing each said power source capsule from an associated receptacle of said plurality of receptacles for replacement;monitoring, by a controller connected to said plurality of power source elements, a power level of each said power source element;determining, by said controller based on a power level reading for each said power level, an order for replacement of each said power source element;retrieving, by a communication interface communicatively coupled to said controller and comprised by said vehicle power source apparatus, each said power level reading and said order for replacement from said controller; andtransmitting, by said communication interface, each said power level reading and said order for replacement to an external system, wherein at least one power source element of said plurality of power source elements is replaced, based on each said power level reading and said order for replacement, with a fully charged power source element within an associated power source capsule of said plurality of power source capsules, supplied by said additional multiple compartment housing during said docking process occurring during said operation of said vehicle and said additional vehicle. 14. The method of claim 13, wherein said multiple compartment housing further comprises a charge strength percentage indicator connected to each said power source element in each said receptacle, and wherein said method further comprises: presenting, by each said charge strength percentage indicator a current charge level percentage reading for each said power source element. 15. The method of claim 13, further comprising: generating, by said controller, replacement data specifying a replacement history of each said power source element, wherein said order for replacement of each said power source element is further based on said replacement data. 16. The method of claim 13, further comprising: generating, by said controller, discharge data specifying a rate of power discharge for each said power source element, and wherein said order for replacement of each said power source element is further based on said discharge data. 17. The method of claim 13, wherein said multiple compartment housing further comprises a global positioning satellite (GPS) receiver communicatively connected to said controller, and wherein said method further comprises: receiving, by said GPS receiver, geographical coordinates from a satellite, anddetermining, by said controller based on said geographical coordinates, a current location for said vehicle power source apparatus. 18. The method of claim 17, further comprising: determining, by said controller, a replacement requirement action for replacing each said power source element based on a remaining power charge level percentage determined from said charge level reading; andtransmitting, by said communication interface, a message, to said external system, indicating said replacement requirement action. 19. The method of claim 18, further comprising: determining, by said controller, a current location for a power source element replacement location for replacing each said power source. 20. A computer program product, comprising a computer readable hardware storage device storing a computer readable program code, said computer readable program code comprising an algorithm that when executed by a controller of an vehicle power source apparatus implements an vehicle power source element replacement method, said method comprising: supplying, by a plurality of power sources elements residing within a plurality of power source capsules retained within a plurality of receptacles of a multiple compartment housing of a vehicle power source apparatus, power to a vehicle, wherein each power source capsule of said plurality of power source capsule comprises an O-ring seal for creating a weather proof seal when each said power source capsule is locked into place within said plurality of receptacles, wherein said multiple compartment housing is configured to be physically attached to said vehicle, wherein said multiple compartment housing comprises alignment guide holes for aligning, via a tapered pin alignment method, said multiple compartment housing with an additional multiple compartment housing, comprising tapered pins, of an additional vehicle via a docking process occurring during operation of said vehicle and said additional vehicle, wherein each power source element of said plurality of power source elements is independently electrically connected, through a power source capsule of said plurality of power source capsules, to an input power coupler for independent electrical connection to said vehicle such that each said power source element or grouping of power source elements of said plurality of power source elements is configured to supply power to said vehicle independently without requiring power supplied by any other power source element of said plurality of power sources, wherein each said power source capsule comprises a conical shape for placement within an associated receptacle of said plurality of receptacles, wherein each said power source capsule comprises a first conical portion electro-magnetically connected to a second conical portion, wherein said first conical portion comprises a first mechanical actuator, wherein said second conical portion comprises a second mechanical actuator, and wherein each said first mechanical actuator and each said second mechanical actuator comprises a piston mechanism configured to automatically move each said power source capsule in multiple directions for removing each said power source capsule from an associated receptacle of said plurality of receptacles for replacement;monitoring, by a controller connected to said plurality of power source elements, a power level of each said power source element;determining, by said controller based on a power level reading for each said power level, an order for replacement of each said power source element;retrieving, by a communication interface communicatively coupled to said controller and comprised by said vehicle power source apparatus, each said power level reading and said order for replacement from said controller; andtransmitting, by said communication interface, each said power level reading and said order for replacement to an external system, wherein at least one power source element of said plurality of power source elements is replaced, based on each said power level reading and said order for replacement, with a fully charged power source element within an associated power source capsule of said plurality of power source capsules, supplied by said additional multiple compartment housing during said docking process occurring during said operation of said vehicle and said additional vehicle.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.