보고서 정보
주관연구기관 |
성균관대학교 산학협력단 |
연구책임자 |
김덕준
|
참여연구자 |
서광원
,
김종복
,
박주향
|
보고서유형 | 최종보고서 |
발행국가 | 대한민국 |
언어 |
한국어
|
발행년월 | 2007-03 |
과제시작연도 |
2006 |
주관부처 |
환경부 |
연구관리전문기관 |
한국환경기술진흥원 |
등록번호 |
TRKO200800000135 |
과제고유번호 |
1480000656 |
사업명 |
차세대핵심환경기술개발 |
DB 구축일자 |
2013-04-18
|
키워드 |
중금속.분리.분자각인.고분자.마이크로 입자.heavy metal.separation.molecular imprinting.polymer.microparticle.
|
초록
▼
1. 연구목표
- 고효율 중금속이온 각인고분자입자의 제조공정 구축
- 각인 고분자입자를 이용한 중금속이온 분리조건을 확립
- 환경유해 중금속이온의 기본 분리공정을 구축
2. 연구결과
가. 전체 각인고분자 입자 제조
- 금속이온 각인 고분자(MIIP)를 EGDMA와 Cu(MAA)2의 침전중합법으로 제조
- 1∼4${\mu}m$인 단분산 형태의 MIIP 입자를 높은 수율로 얻음
- Cu(II)이온 각인고분자의 흡착량은 건조된 각인 고분자 1g당 0.278mmo1의 Cu(II
1. 연구목표
- 고효율 중금속이온 각인고분자입자의 제조공정 구축
- 각인 고분자입자를 이용한 중금속이온 분리조건을 확립
- 환경유해 중금속이온의 기본 분리공정을 구축
2. 연구결과
가. 전체 각인고분자 입자 제조
- 금속이온 각인 고분자(MIIP)를 EGDMA와 Cu(MAA)2의 침전중합법으로 제조
- 1∼4${\mu}m$인 단분산 형태의 MIIP 입자를 높은 수율로 얻음
- Cu(II)이온 각인고분자의 흡착량은 건조된 각인 고분자 1g당 0.278mmo1의 Cu(II)를 흡착하였음
- 흡착된 구리이온의 포화량은 pH가 5.6일 때 0.35mM의 농도에서 달성
나. 표면 각인고분자 입자 제조
- 지름이 3.2에서 $4{\mu}m$의 크기를 갖는 표면 각인 고분자가 입자가 약간 변형된 코어-쉘 중합법에 제조.
- 고분자 합성 이후에 얻어진 결합소가 잘 조직화 됨
- Cu(II)각인 고분자속에 존재하는 구리 이온은 짧은 시간 안에 제거
- 제조된 구리 이온 각인고분자의 흡착속도와 흡착력은 매우 높음
- pH가 증가함에 따라서 미소구 표면에서의 카르복실 그룹의 해리 때문에 흡착력은 빠르게 증가
- 각인 고분자가 각인 안된 고분자보다 높은 효율성과 선택도를 유지
- Cu(II)각인 고분자는 10번 이상 사용해도 99%이상의 재현률을 나타냄
Abstract
▼
Molecular imprinting technique has been widely and successfully used to prepare polymers offering high affinitybinding sites for a variety of molecules, including organic, inorganic and even biological molecules or ions. These materials are useful for various application fields such as: biomaterial,
Molecular imprinting technique has been widely and successfully used to prepare polymers offering high affinitybinding sites for a variety of molecules, including organic, inorganic and even biological molecules or ions. These materials are useful for various application fields such as: biomaterial, sensor technologies, molecular and ionic separations, and catalysis. Various techniques have been used for separation or preconcentration of trace metals, including co-precipitation, liquid-liquid extraction, off-line preconcentration and separation involving adsorption on activated carbon, dithizone-anchored poly-(EGDMA-HEMA) microbeads, polyurethane foam, amberlite XAD resins and other solid phases, and on-line flow injection. These methods often require large amounts of high purity, organic solvent, some of which are harmful to health and create environmental problems. Therefore, much more selective systems for the separation of metal ions are needed for the development of new extractants and adsorbents. Much of the current research in solid phase extraction is about the use of metal ion-imprinted polymers(MIIP) due to their low price and high stability in different environments and their higher selectivity than common techniques. Many MIIPs have been prepared, including lanthanides, actinides, noble metals and heavy metals and transition elements such as Dy(III), Gd(III), $UO_2(II)$, Pd(II), Cu(II), Zn(II), Al(III), Pb(II), Ni(II), Ca(II) and Mg(II) imprinted ones.
1. Synthesis of metal ion imprinted polymer microspheres
Metal ion-imprinted polymer(MIIP) microspheres were produced by a precipitation polymerization of EGDMA and $Cu(MAA)_2$. By controlling the polymerization parameters, uniform MIIP microspheres were obtained in high yield and their average size was controlled to between 1 and $4{\mu}m$ in diameter. The adsorption time required to reach equilibrium was very short(10 min). The maximum adsorption capacity of MIIP for Cu(II) ions was 0.278 mmol per gram of dry imprinted beads and was much higher than that of non-MIIP. The absorption values increased with increasing pH and metal ion concentration, and a saturation value was achieved at pH 5.6 and a concentration of 0.35 mM. This imprinting effect of MIIP was even observed in the case of ions having similar chemical and physical properties with copper, and MIIP exhibited much higher efficiency and selectivity than the corresponding non-MIIP. The regular form and narrow size distribution of the microspheres make them easy to handle directly in various applications such as stationary phases in chromatography. As our novel precipitation polymerization technique using a rotary evaporator is very suitable for the preparation of metal-containing, monomer-derived MIIP having very high selectivity and quick absorption kinetics, we expect that this method will open a new direction for the preparation of metal ion-imprinted polymers in the future.
2. Synthesis of surface imprinted core-shell true microspheres
The surface imprinted polymer particles in the diameters from 3.2 to 4 m were readily prepared by a modified core-shell polymerization procedure. The size, shape, morphology and a variety of physico-chemical structure and properties of the core-shell imprinted microspheres were characterized by SEM, FTIR, Zeta potential, EDX, XPS, and AFM analysis. The zeta potential and atomic and morphology analysis by XPS and AFM confirmed that all binding sites organized during polymerization were on "working state". Copper ions were successfully removed from the host polymer particles in very short time to prepare the Cu(II) imprinted microbeads. Adsorption kinetics and adsorptivity of the prepared Cu(II) imprinted microbeads were very high. The absorption capacity increased rapidly with increasing pH value due to the dissociation of carboxylic groups in microparticle surface. The competitive adsorption capacity of MIIPs for $Cu^{2+}$ and other metal ions was investigated. The imprinted polymers exhibited much higher efficiency and selectivity than the blank polymers. The Cu(II) imprinted copolymers can be used at least 10 times with recoveries no less than 98%.
목차 Contents
- 표지...1
- 제출문...2
- 보고서 초록...3
- 요약문...4
- SUMMARY...10
- CONTENTS...12
- 목차...13
- 제1장 연구개발과제의 개요...14
- 제1절 연구개발의 목적 및 필요성...14
- 제2절 연구개발 내용 및 범위...16
- 제2장 국.내외 기술개발 현황...28
- 제1절 국.내외 연구 동향...28
- 1. 국외 기술개발 동향...28
- 2. 국내 기술 개발 동향...28
- 3. 국.내외 기술개발 현황에서 차지하는 위치...28
- 제3장 연구개발수행 내용 및 결과...32
- 제1절 실험 방법...32
- 제2절 연구 결과...46
- 제3절 결론...123
- 제4장 목표 달성도 및 관련분야에의 기여도...124
- 제1절 연구개발 목표 달성도...124
- 제2절 대외 기여도...126
- 제5장 연구개발결과의 활용계획...127
- 제1절 추가연구의 필요성...127
- 제2절 타 연구에의 파급효과 및 활용방안...127
- 제3절 기업화 추진 방향...128
- 제6장 연구개발과정에서 수집한 해외과학기술정보...130
- 제7장 참고문헌...132
※ AI-Helper는 부적절한 답변을 할 수 있습니다.