$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 이미지프로세싱기법을 이용한 포장이미지의 특성과 노이즈제거를 위한 알고리즘 선정
Characteristics of Asphalt Pavement Images and Enhanced Algorithm for Noise Reduction 원문보기

한국도로포장공학회 논문집 = Journal of the Korean Society of Pavement Engineers, v.3 no.4 = no.10, 2001년, pp.137 - 146  

김정용 (중앙대학교 건설환경공학과) ,  조윤호 (중앙대학교 건설환경공학과)

초록
AI-Helper 아이콘AI-Helper

포장유지관리시스템에 있어서 포장표면 정보는 가장 중요한 인자 중의 하나이다. 따라서 일찍부터 선진국들은 자국의 현실에 알맞은 포장표면 조사장비와 프로그램을 개발하여 사용하고 있다. 국내의 경우 고가의 외국장비와 프로그램을 수입하여 사용하고 있으나 많은 문제점으로 인해 국산 장비와 포장표면 분석 프로그램 개발의 필요성이 대두되고 있다. 본 연구는 아스팔트 포장표면 분석 프로그램 개발을 위한 선행연구이다. 본 연구의 초점은 이미지프로세싱 기술을 이용한 포장표면 분석 원리를 규명하고 포장이미지의 특성 및 포장이미지의 노이즈를 효과적으로 제거하기 위한 알고리즘을 실험하는 것이다. ARAN(Automatic Road Analyser)의 균열맵을 분석 샘플로 이용하였으며, 포장이미지의 통계적인 특성, 히스토그램, FFT(Fast Fourier Transform)영상을 분석하여 일반적인 이미지에 비해 노이즈와 고주파 성분이 많고, 배경과 균열 분리가 어려운 특성을 규명하였다. 또한 노이즈 제거를 위해 다양한 필터를 적용하여 실험한 결과 마스크 크기가 3X3인 중간값 필터가 가장 효과가 좋은 것으로 나타났다.

Abstract AI-Helper 아이콘AI-Helper

Pavement distresses are one of the most important data for pavement management systems. Inspection machines and its related programs have been used for operating tools in PMS developed in advanced countries. In Korea imported machines and programs for the length price ale utilized to get information...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구는 아스팔트 포장표면 분석 프로그램 개발에 앞서 이미지프로세싱 기술을 이용한 포장 표면 분석 원리를 살펴보고 포장이미지의 특성 및 포장이미지의 노이즈를 효과적으로 제거하기 위한 알고리즘을 선정하였다.
  • 본 절에서는 포장영상이 어떤 특성을 띄는지 확인하고 영상처리 단계에 적용할 수 있는 방안을 찾고자 하였다.
  • 본 연구에서는 포장이미지의 특성과 포장이미지상의 노이즈를 가장 효과적으로 제거하는 알고리즘을 찾기 위해, 문헌조사를 통해 이미지 프로세싱의 원리 및 활용 알고리즘을 분석하고 ARAN이미지를 이용하여 히스토그램, 평균밝기값, 표준편차 등의 이미지의 통계치, FFT이미지 의 특성을 분석하였다. 그리고 포장에 사용되었던 각종 노이즈 제거 알고리즘들을 적용하여 다음과 같은 결론을 얻을 수 있었다.
본문요약 정보가 도움이 되었나요?

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로