$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

ICP-MS를 이용한 알칼리암의 희토류원소 정량분석
Determination of Rare Earth Elements Abundance in Alkaline Rocks by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 원문보기

Ocean and polar research, v.25 no.1, 2003년, pp.53 - 62  

허순도 (한국해양연구원 극지연구본부) ,  이종익 (한국해양연구원 극지연구본부) ,  이미정 (한국해양연구원 극지연구본부) ,  김예동 (한국해양연구원 극지연구본부)

Abstract AI-Helper 아이콘AI-Helper

Inductively coupled plasma mass spectrometry (ICP-MS) is useful instrument for determining abundance of rare earth elements, due to very low detection limits and rapid data acquisition. In this article, two methods are used for decomposition of alkaline rocks; close vessel acid digestion and $N...

주제어

참고문헌 (50)

  1. Aries, S., M. Valladon, M. Polve, and B. Dupre. 2000. A Routine method for oxide and hydroxide interference corrections in ICP-MS chemical analysis of environmental and geological samples. Geostand. Newsl.: J. Geostandards Geoanal., 24, 19-31. 

  2. Balanganskay, E., A. Verhulst, H. Downes, R. Liferovich, D. Demaiffe, and K. Laajoki. 2000. Geochemistry, petrography and mineralogy of clinopyroxenite, phoscorites and carbonatites of the Seblyavr massif, Kola Alkaline Carbonatite Province, Russia. Abstract of the 5th Svekalapko Workshop, University of Oulu. 

  3. Bea, F., P. Montero, A. Stroh, and J. Baasner. 1996. Microanalysis of minerals by an Eximer UV-LA-ICP-MS system. Chem. Geol., 133, 145-156. 

  4. Becker, J.S. and H.-J. Dietze. 1999. Long lived radionucIides: Ultratrace and precise isotope analysis by double-focusing sector field ICP-MS. 99 European Winter Conference on Plasma Spectrochemistry (Pau), abstract volume, 55 p. 

  5. Burman, O., C. Ponter, and K Bostromet. 1978. Metaborate digestion procedure for Inductively Coupled Plasma-Optical Emission Spectrometry. Anal. Chem., 50, 679-680. 

  6. Chao, T.T. and R.F. Sanzolone. 1992. Decomposition techniques. Geochem. Explor., 44, 65-106. 

  7. Cremer, M. and J. Schlocker. 1976. Lithium borate decomposition of rocks, minerals and ores. Am. Mineral., 61, 318-321. 

  8. Date, A.R., Y.Y. Cheung, and M.E. Stuart. 1987. The influence of polyatomic ion interferences in analysis by inductively coupled plasma-source mass spectrometry (lCP-MS). Spectrochim. Acta, 42B, 3-20. 

  9. Eby, G.N. 1975. Abundance and distribution of the rare earth elements and yttrium in the rocks and minerals of the Oka carbonatite complexes, Quebec. Geochim. Cosmochim. Acta, 39, 597-620. 

  10. Evans, E.H. and J.J. Giglio. 1993. Interferences in inductively 

  11. Fahey, A.J., J.N. Goswami, K.D. Mckeegan, and E. Zinner. 1987. $^{26}AI,\;^{244}Pu,\;^{50}Ti$ , REE and trace element abundances in hibonite grains from CM and CV meteorites. Geochim. Cosmochim. Acta, 51, 329-350. 

  12. Fujimaki, H. 1986. Partition coefficents of Hf, Zr and REE 

  13. Gao, S., X. Liu, H. Yuan, B. Hattendorf, D. Gunther, L. Chen, and S. Hu. 2002. Determination of forty two major and trace elements in USGS and NIST SRM-glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostand. Newsl. J. Geostandards Geoanal., 26, 181-195. 

  14. Heaman, L.M., R. Bowins, and J. Crocket. 1990. The chemical composition of igneous zircon suites: implications for geological tracer studies. Geochim. Cosmochim. Acta, 54, 1597-1607. 

  15. Hieftje, G.M., S.J. Ray, J.P. Guzowski, A.M. Leach, and J.A.C. Broekaert. 1999. Driving forces for next generation plasma spectrometric instrumentation: Present needs, better knowledge and new technologies. 99 European Winter Conference on Plasma Spectrochemistry (Pau), abstract volume, 55 p. 

  16. Hoskin, P.W.O. 1998. Minor and trace element analysis of natural zircon( $ZrSiO_4$ ) by SIMS and laser ablation ICP-MS: a consideration and comparison of two broadly competitive techniques. J. Trace Microprobe Tech., 16, 301-326. 

  17. Houk, R.S. 1999. New frontiers in instrumentation for ICP-MS. 99 European Winter Conference on Plasma Spectrochemistry (Pau), abstract volume, 55 p. 

  18. Ingamells, C.O. 1970. Lithium metaborate flux in silicate analysis. Anal. Chim. Acta, 52, 323-334. 

  19. Jarvis, K.E. 1990. A critical evolution of two sample preparation techniques for low-level determination of some geologically incompatible elements by inductively coupled mass spectrometry. Chem. Geol. 83, 89-103. 

  20. Jarvis, K.E. 1988. Inductively coupled plasma mass spectrometry: a new technique for the rapid or ultra-trace level determination of the rare-earth elements in geological materials. Chem. Geol., 68, 31-39. 

  21. Jarvis, K.E., A.L. Gray, and R.S. Houk. 1992. Handbook of Inductively Coupled Plasma Mass Spectrometry. Blackie, Galsgow, 375 p. 

  22. Kay, R.W. and P.W. Gast. 1973. The rare earth content and origin of alkali-rich basalts. J. Geol., 81, 653-682. 

  23. Lam, J.W.H., L. Yang, and J.W. McLaren. 1999. Application of ICP-MS to the production of environmental certified reference materials. 99 European Winter Conference on Plasma Spectrochemistry (pau), abstract volume, 55 p. 

  24. Lee, M.J., J.l. Lee, and S.D. Hur. 1999. Nature of carbonatite complexes of the Kola-Karelia Province in Arctic Region: special emphasis on mineral potential. Korean J. of Polar Res., 10, 143-154. 

  25. Lichte, F.E., A.L. Meier, and J.G. Crock. 1987. Determination of the rare-earth elements in geological materials by inductively coupled plasma mass spectrometry. Anal. Chem., 1150-1157. 

  26. MacRae, N.D. and J.B. Metson. 1985. In situ rare-earth element analysis of coexisting pyroxene and plagioclase by secondary ion mass spectrometry. Chem. Geol., 53, 325-333. 

  27. Mass, R., P.D. Kinny, l.S. Williams, D.O. Froude, and W. Compston. 1992. The earth's oldest known crust: a geochronological and geochemical study of 3900-4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Acta, 56, 1281-1300. 

  28. May, T.W. and R.H. Wiedmeyer. 1998. A table of poly-atomic interferences in ICP-MS. Atomic Spectrosc., 19, 150-155. 

  29. Metson, J.B., G.M. Bancroft, H.W. Nesbitt, and R.G. Jonassen. 1984. Analysis for rare earth elements in accessory minerals by specimen isolated secondary ion mass spectrometry. Nature, 307, 347-349. 

  30. Minnich, M.G. and R.S. Houk. 1998. Comparison of cryogenic and membrane desolvation for attenuation of oxide, hydride and hydroxide ions and ions containing chlorine in inductively coupled plasma-mass spectrometry. 

  31. Moller, P.G., S. Morteani, and F. Schley. 1980. Discussion of REE distribution patterns of carbonatites and alkaline rocks. Lithos, 13, 171-179. 

  32. Murali, A.V., R. Parthasarathy, T.M. Mahadevan, and M. Sankar Das. 1983. Trace element characteristics, REE patterns and partition coefficents of zircons from different geological environments- a case study on Indian zircons. 

  33. Nagasawa, H. 1970. Rare earth concentrations in zircons and 

  34. Panteeva, S.V., D.P. Gladkochoub, T.V. Donskaya, V.V. Markova, and G.P. Sandimirova. 2003. Determination of 24 trace elements in felsic rocks by inductively coupled plasma mass spectrometry after lithium metaborate fusion. Spectrochim. Acta B, 58, 341-350. 

  35. Potts, M.J., T.O. Early, and A.G. Herman. 1973. Determination of rare earth element distribution patterns in rocks and minerals by neutron activation analysis. Z. Anal. Chem., 263, 97-100. 

  36. Reed, N.M., R.O. Cairns, R.C. Hutton, and Y. Takaku. 1994. Charaterisation of polyatomic ion interferences in inductively coupled plasma-mass spectrometry using a high resolution mass spectrometer. J. Anal. Atomic Spectrom., 9, 881-896. 

  37. Sano, Y., K. Terada, and T. Fukuoka. 2002. High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. Chem. Geol., 184, 217-230. 

  38. Sano, Y. and K. Terada. 2001. In situ ion microprobe U-Pb dating and REE abundances of a Carboniferous conodont. Geophys. Res. Lett., 28, 831-834. 

  39. Sano, Y., K. Terada, Y. Nishio, H. Amakawa, and Y. Nozaki. 1999. Ion microprobe analysis of rare earth element in oceanic basalt glass. Anal. Sci., 15, 743-748. 

  40. Shao, Y. and G. Horlick. 1991. Recognition of mass spectral interferences in inductively coupled plasma-mass spectrometry. Appl. Specttrosc., 45, 413-147. 

  41. Shimizu, N. and S.H. Richardson. 1987. Trace element abundance patterns of garnet inclusions in peridotite-suite diamonds. Geochim. Cosmochim. Acta, 51, 755-758. 

  42. Sholkoviz, E.R. 1990. Rare earth elements in marine sediments and geochemical standards. Chem. Geol., 88, 333-347. 

  43. Smirnova, E.V., I.N. Fedorova, G.P. Sandimirova, L.L. Petrov, N.G. Balbekina, and V.I. Lozhkin. 2003. Determination of rare earth elements in black shales by inductively coupled plasma mass spectrometry. Spectrochim. Acta B, 58, 329-340. 

  44. Sun, S.S. and W.F. McDonough. 1989. Magmatism in the ocean basins. Geol. Soc. Spec. Pub., 42, 313-345. 

  45. Tan, S.H. and G. Horlick. 1986. Background spectral features in inductively coupled plasam-mass spectrometry. Appl. Spectrosc., 40, 1127-1137. 

  46. Tang, Y.Q., K.E. Jarvis, and L.G. Williams. 1992. Determination of trace elements in 11 Chinese geological reference materials by ICP-MS. Geostand. Newsl.: J. Geostandards Geoanal., 16, 61-70. 

  47. Thomson, M. and J.N. Walsh. 1989. Handbook of Inductively Coupled Plasma Mass Spectrometry. Blackie, Glasgow, 316 p. 

  48. Vaughan, M.A. and G. Horlick. 1986. Oxide, hydroxide, and doubly charged analyte species in inductively coupled plasma-mass spectrometry. Appl. Spectrosc., 40, 434-445. 

  49. Verhulst, A., E. Balaganskaya, Y. Kirnarsky, and D. Demaiffe. 

  50. Walsh, J.N. 1980. The simultaneous determination of the major, minor and trace constituents of silicate rocks using inductively coupled plasma spectrometry. Spectochim. Acta B, 35, 107-111. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로