$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 니켈의 독성과 발암성
Nickel Toxicity and Carcinogenicity 원문보기

환경독성학회지 = Journal of environmental toxicology, v.19 no.2, 2004년, pp.119 - 134  

박형숙 (한서대학교 환경공학과) ,  박광식 (동덕여자대학교 약학대학)

Abstract AI-Helper 아이콘AI-Helper

Human exposure to highly nickel-polluted environments, such as those associated with nickel refining, electroplating, and welding, has the potential to produce a variety of pathologic effects. Among them are skin allergies, lung fibrosis, and cancer of the respiratory tract. The exact mechanisms of ...

주제어

참고문헌 (129)

  1. An WG, Kanekal M, Simon MC, Maltepe E and Neckers LM. Stabilization of wild-type p53 by hypoxia-inducible factor 1 alpha, Nature 1998; 392: 405-408 

  2. Arrouijal FZ, Hildebrand HF, Vophi H and Marzin D. Genotoxic activity of nickel subsulphide alpha- $Ni_3S_2$ , Mutagenesis 1990; 5: 583-589 

  3. Arvidsson H and Bogg A. Transitory pulmonary infilterations in acute generalized dermatitis, Acta Derma. Venereologica 1959; 39: 30-34 

  4. Bal W, Kozlowski H and Kasprzak KS. Molecular models in nickel carcinogenesis, J. Inorg. Biochem. 2000; 79: 213-218 

  5. Bal W, Schwerdtle T and Hartwig A. Mechanism of nickel assault on the zinc finger of DNA repair protein XPA, Chem. Res. Toxicol. 2003; 16: 242-248 

  6. Biedermann KA and Landolph JT. Induction of anchorage independence in human diploid foreskin fibroblasts by carcinogenic metal salts, Cancer Res. 1987; 47: 3815-3823 

  7. Biggart NW, Gallick GE and Murphy Jr. EC. Nickel-induced heritable alterations in retroviral transforming gene expression, J. Virol. 1987; 61: 2378-2388 

  8. Broday L, Peng W, Kuo MH, Salnikow K, Zorod DU M and Costa M. Nickel compounds are novel inhibitors of histone H4 acetylation, Cancer Res. 2000; 60 (2): 238-241 

  9. Buzard GS and Kasprzak KS. Possible roles of nitric oxide and redox cell signaling in metal-induced toxicity and carcinogenesis: a review, J. Environ. Pathol. Toxicol. Oncol. 2000; 19: 179-199 

  10. Cai Y and Zhuang Z. DNA damage in human peripheral blood lymphocyte caused by nickel and cadmium (Chin), Zhonghua Yu Fang Yi Xue Za Zhi 1999; 33: 75-77 

  11. Campbell JA. Lung tumours in mice and man, Br. Med. J. 1943; 1: 179-183 

  12. Carson BC, Ellis HV and McCann JL. Toxicology and Biological Monitoring of Metals in Humans: Including Feasibility and Need: Lewis Publishers, Chelsea, Michigan, 1986 

  13. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC and Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription, Proc. Natl. Acad. Sci. USA 1998; 95: 11715-11720 

  14. Chiocca SM, Sterner DA, Biggart NW and Murphy EC Jr.Nickel mutagenesis: alteration of the MuSVtsllO ther-mosensitive splicing phenotype by a nickel-induced duplication of the 3'splice site, Mol. Carcinog. 1991; 4: 61-71 

  15. Christie NT, Cantoni 0, Sugiyama M, Cattabeni F and Costa M. Differences in the effects of Hg (II) on DNA repair induced in Chinese hamster ovary cells by ultra-violet or X-rays, Mol. Pharmacol. 1986; 29: 173-178 

  16. Christie NT, Tummolo DM, Klein CB and Rossman TG. Role of Ni (II) in mutation, in: Nieboer E, Nriagu JO (Eds), Nickel and Human Health: Current Perspectives, Wiley, New York, 1992; 305-317 

  17. Conway K and Costa M. Nonrandom chromosomal alterations in nickel-transformed Chinese hamster embryo cells, Cancer Res. 1989; 49: 6032-6038 

  18. Coogan TP, Latta DM, Snow ET and Costa M. Toxicity and carcinogenicity of nickel compounds, Crit. Rev. Toxicol. 1989; 19:341-384 

  19. Costa M and Mollenhauer HH. Carcinogenic activity of paniculate nickel compounds is proportional to their cellular uptake, Science 1980; 209: 515-517 

  20. Costa M. Molecular mechanisms of nickel carcinogenesis, Ann. rev. Pharmacol. Toxicol. 1991; 31: 321-337 

  21. Costa M. Mechanisms of nickel genotoxicity and carcino-genicity, in Chang LW (Ed.), Toxicology of Metals, CRC Press, Boca Raton 1996; 245-251 

  22. Coyle CL and Stiefel EL. The coordination chemistry of nickel: an introductory survey, In: Lancaster JR, editor. The bioinorganic chemistry of nickel, Weinheim: VCH Publishers, 1988; 1-28 

  23. Daldrup T, Haarhoff K and Szathmary SC. Teodliche nickel sulfate intoxikation, Berichte Zur. Gerichlichen Medizin 1983;41: 141-144 

  24. Denkhaus E and Salnikow K. Nickel essentiality, toxicity, and carcinogenicity, Crit. Rev. Oncol. Hematol. 2002; 42:35-56 

  25. Diwan BA, Kasprzak KS and Rice JM. Transplacental carcinogenic effects of nickel (II) -acetate in the renal cortex, Carcinogenesis 1992; 13: 1351-1357 

  26. Doll R. Report of the International Committee on Nickel Carcinogenesis in Man, Scan. J. Work. Environ. Health 1990;16: 9-82 

  27. Dubins JS and LaVelle JM. Nickel (II) genotoxicity: potentiation of mutagenesis of simple alkylating agents, Mutat.Res. 1986; 162: 187-199 

  28. Evans RM, Davies PJ and Costa M. Video timelapse microscopy of phagocytosis and intracellular fate of crystalline nickel sulfide particles in cultured mammalian cells, Cancer Res. 1982, 42: 2729-2735 

  29. Ferm VH and Carpenter S. The teratogenic effects of metals on mammalian embryo, Adv.Teratol. 1968; 5: 51-75 

  30. Fletcher GG, Rosetto FE, Turnbull JD and Nieboer E. Toxicity, uptake, and mutagenicity of paniculate and soluble nickel compounds, Environ. Health Perspect 1994; 102 (suppl 3): 69-79 

  31. Foulkes EC and McMullen DM. On the mechanism of nickel absorption in the rat jejunum, Toxicology 1986; 38:35-42 

  32. Funakoshi T, Inoue T, Shimada H and Kojima S. The mechanism of nickel uptake by rat primary hepatocyte cultures: role of calcium channels, Toxicology 1997; 124:21-26 

  33. Goebeler M, Meinardus-Hager G and Roth J. Nickel chloride and cobalt chloride, two common contact sensi-tizers, directly induce expression of ICAM-l, VCAM 1, and ELAM-l by endothelial cells, J. Invest Dermatol. 1993; 100: 759-765 

  34. Goebeler M, Roth J and Brocker EB. Activation of nuclear factor-kappa B and gene expression in human endothe-lial cells by the common haptens nickel and cobalt, J. Immunol. 1995; 155: 2459-2467 

  35. Goldberg MA, Dunning SP and Bunn HF. Regulation of the erythropoietin gene: evidence that the oxigene sensor is a heme protein, Science 1988; 242: 1412-1415 

  36. Graven KK, McDonald RJ and Farber HW. Hypoxia regulation of endothelial glyceraldehyde-3-phosphate dehydrogenase, Am. J. Physiol. 1998; 43: 347-355 

  37. Grimsrud TK, Berge SR, Martinsen JI and Andersen A. Lung cancer incidence among Norwegian nickel-refinery workers, 1953-2000, J. Environ. Monit. 2003; 5: 190-197 

  38. Hansen K and Stern RM. In vitro toxicity and transformation potency of nickel compounds, Environ. Health Perspect 1983;51: 223-226 

  39. Hartwig A, Mullenders LHF, Schlepegrell R, Kasten U and Beyersmann D. Nickel (II) interferes with the incision step in nucleotide excision repair in mammalian cells, Cancer 1994; 54: 4045-4051 

  40. Hartwig A, Asmuss M, Blessing H, Hoffmann S and Burkle A. Interference by toxic metal ions with zinc-dependent proteins involved in maintaining genomic stability Food Chem. Toxicol. 2002; 40: 1179-1184 

  41. Harty LC, Guinee Jr. DG, Travis WD, Bennett WP, Jett J, Coby TV, Tazelaar H, Trastek V, Pairolero P, Liotta LA, Harris CC and Caporaso NE. p53 mutations and occupational exposures in a surgical series of lung cancers, Cancer Epidemiol. Biomark. Prev. 1996; 5: 997-100 

  42. Hernandez-Boussard T, Rodriguez-Tome P and Montesano R. IARC p53 mutation database: a relational database to compile and analyze p53 mutations in human tumors and cell lines, Hum. Mutat. 1999; 14: 1-8 

  43. Herrero MC, Alvarez C, Cartana J, Blade C and Arola L. Nickel effects on hepatic amino acids, Res. Commun. Chem. Pathol. Pharmacol. 1993; 79: 243-248 

  44. Higinbotham KG, Rice JM, Diwan BA, Kasprzak KS, Reed CD and Perantoni AO. GGT to GTT transversions in codon 12 of the Kras oncogene in rat renal sarcomas induced with nickel subsulfide or nickel subsulfide/iron are consistent with oxidative damage to DNA, Cancer Res. 1992,52:4747-4751 

  45. Ho VT and Bunn HF. Effects of transition metals on the expression of the erythropoietin gene: further evidence that the oxygen sensor is a heme protein, Biochem. Biophys. Res. Cornmun. 1996; 223: 175-180 

  46. Hopfer SM, Sunderman FW Jr., Frednckson TN and Morse EE. Increased serum erythropoietin activity in rats following intrarenal injection of nickel subsulfide, Res Commun. Chem. Pathol. Pharmacol. 1979; 23 (1): 155-170 

  47. Hopfer SM, Linden JV, Cristomo C and Sunderman Jr. FW. Hypemickelemia in hemodialysis patients, Annals Cli. Lab. Science; 14: 12-13 

  48. Horak E, Zygowicz ER, Tarabishy R, Mitchell JM and Sunderman FW Jr. Effects of nickel chloride and nickel carbonyl upon glucose metabolism in rats, Ann. Clin. Lab.Sci. 1978: 8(6): 476-482 

  49. Huang X, Klein CB and Costa M. Crystalline $Ni_3S_2$ specifi-cally enhances the formation of oxidants in the nuclei of CHO cells as detected by dichlorofluorescein, Carcinogenesis 1994; 15 (3): 543-548 

  50. Huang LE, Ho V and Arany Z. Erythropoietin gene regu-lation depends on heme-dependent oxygen sensing and assembly of interacting transcription factors, Kidney Int. 1997;51:548-553 

  51. Huang LE, Gu J, Schau M and Bunn HF. Regulation of hypoxia-inducible factor 1 alpha is mediated by an 02-dependent degradation domain via the ubiquitin proteasome pathway, Proc. Natl. Acad. Sci. USA 1998; 95:7987-7992 

  52. IARC (International Agency for Research on Cancer). Chromium, Nickel, and Welding, IARC Monographs on the Evaluation of Carcinogenic Risks of Chemicals to Humans, World Health Organization, Lyon, 1990; 49: 49-25 

  53. Iwitzki F, Schlepegrell R, Eichhorn U and Hartwig A. NickeI (II) inhibits the repair of O6-methylguanine in mammalian cells, Arch. Toxicol. 1998; 72: 681-689 

  54. Kaaber K, Veinin NK and Tjell JC. Low nickel diet in the treatment of patients with chronic nickel dermatitis, British J. Dermatol. 1978; 98: 197-210 

  55. Kargacin B, Klein CB and Costa M. Mutagenic responses of nickel oxides and nickel sulfides in Chinese hamster V79 cell lines as the xanthine-guanine phosphoribosyl transferase locus, Mutat. Res. 1993; 300: 63-72 

  56. Kasprzak KS, Quander RV and Poirier LA. Effects of calciurn and magnesium salts on nickel subsulfide carcinogenicity in Fischer rats, Carcinogenesis 1985; 6: 1161-1166 

  57. Kasprzak KS and Waalkes MP. The role of calcium, magne-sium, and zinc in carcinogenesis, in: Poirier LA, New-berne PM, Pariza MW (Eds), Essential Nutrients in car-cinogenesis, Plenum Press, new York 1986; 497-515 

  58. Kasprzak KS and Hernandez L. Enhancement of hydrox-ylation and deglycosylation of 2' -deoxyguanisine by carcinogenic nickel compounds, Cancer Res. 1989; 49: 5964-5968 

  59. Kasprzak KS, Diwan BA, Konishi N, Misra M and Rice JM. Initiation by nickel acetate and promotion by sodium barbital of renal cortical epithelial tumors in male F344 rats, carcinogenesis 1990; 11:647-652 

  60. Kasprzak K.S. The role of oxidative damage in metal carcinogenicity, Chem. Res. Toxicol. 1991; 4: 604-615 

  61. Kasprzak KS. Possible role of oxidative damage in metal-induced carcinogenesis. Cancer Invest 1995: 13: 411-430 

  62. Kasprzak KS. Oxidative DNA damage in metal-induced carcinogenesis, in: Chang LW, Magos L, Suzuki T (Eds.), Toxicology of Metals, Lewis Publishers, Boca Raton, 1996; 299-320 

  63. Kerckaert GA, LeBoeuf RA and Isfort RJ. Use of the Syrianhamster embryo cell transformation assay for determining the carcinogenic potential of heavy metal compounds, Fundam. Appl. Toxicol. 1996; 34: 67-72 

  64. Klein CB. Frenkel K and Costa M The role of oxidative processes in metal carcinogenesis, Chem. Res. Toxicol. 1991;4:592-604 

  65. Knopfel M, Schulthess G, Funk F and Hauser H. Characterization of an integral protein of the brush border membrane mediating the transport of divalent metalions, Biophys. J. 2000; 79: 874-884 

  66. Kouzarides T. Transcriptional control by the retinoblastoma protein, Semin. Cancer Biol. 1995; 6: 91-98 

  67. Kuehn K, Fraser CB and Sunderman Jr. FW. Phargocytosis of paniculate nickel compounds by rat peritoneal macrophages in vitro, Carcinogenesis 1982; 3: 321-326 

  68. Kuehn K and Sunderman Jr. FW. Dissolution half-times of nickel compounds in water, rat serum, and renal cytosol, J. Inorg. Biochem. 1982; 17: 29-39 

  69. Leach Jr. CN, Linden J, Hopfer SM, Chrisostomo C and Sunderman Jr. FW. Serum nickel concentrations in patients with unstable angina and myocardial infarction, Annals Cli. Lab. Sciences 1984; 14: 414-415 

  70. Lee WH, Bookstein R and Lee EY. Studies on the human retinoblastoma susceptibility gene, J. Cell. Biochem. 1988, 38: 213-227 

  71. Lee YW, Klein CB, Kargacin B, Salnikow K, Kitahara J, Dowjat K, Zhitkovich A, Christie NT and Costa M. Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens, Mol. Cell. Biol. 1995; 15: 2547-2557 

  72. Li W, Zhao Y and Chou IN. Alterations in cytoskeketal protein sulfhydryls and cellular glutathione in cultured cells exposed to cadmium and nickelions, Toxicology 1993, 77: 65-79 

  73. Lin X, Dowjat WK and Costa M. Nickel-induced transformation of human cells causes loss of the phospho-rylation of the retinoblastoma protein, Cancer Res. 1994. 54: 2751-2754 

  74. Maehle L, Metcalf RA, Ryberg D and Bennett WP. Altered p53 gene structure and expression in human epithelial cells after exposure to nickel, Cancer Res. 1992; 52: 218-221 

  75. Mas A, Holt D and Webb M. The acute toxicity and teratogenicity of nickel in pregnant rats, Toxicol 1985; 35: 47-57 

  76. Mayer C, Klein RG, Wesch H and Schmezer P. Nickel subsulfide is genotoxic in vitro but shows no mutagenic potential in respiratory tract tissues of Big Blue rats and Muta Mouse mice in vivo after inhalation, Mutat. Res. 1998; 420: 85-98 

  77. McConnell LH, Fink JN, Schlueter DP and Schmidt Jr. MG Asthma caused by nickel sensitivity, Annala Internal Med.1973; 78: 888-890 

  78. McGregor DB, Baan RA, Partensky C, Rice JM and Wilbourn JD. Evaluation of the carcinogenic risks to humans associated with surgical implants and other foreign bodiesa report of an IARC Monographs Programme Meeting, Eur. J. Cancer 2000; 36: 307-313 

  79. Meyer M, Schreck R and Baeuerle PA. $H_2O_2$ and antiox-idants have opposite effects on activation of $NF_kB$ and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor, EMBO. J. 1993; 12: 2005-2015 

  80. Miki H, Kasprzak KS, Kenney S and Heine UL. Inhibition of intercellular communication by nickel (II): antago-nistic effect of magnesium, carcinogenesis 1987; 8: 1757-1760 

  81. Miller AC, Blakely WF, Livengood D, Whittaker T and Hsu H. Transformation of human osteoblast cells to the tumorigenic phenotype by depleted uranium-uranyl chloride, Environ. Health Perspect. 1998; 106: 465-471 

  82. Muller-Fassbender M, Elsenhans B, McKie AT and Schumann K. Different behaviour of 63Ni and 59Fe during absorption in iron-deficient and iron-adequate jejunal rat segments ex vivo, Toxicology 2003; 185: 141-153 

  83. Nackerdien Z, Kasprzak KS, Rao G, Halliwell B and Dizdaroglu M. Nickel (II)-and cobalt (II)-dependent damage by hydrogen peroxide to the DNA bases in isolated human chromatin, Cancer Res. 1991; 51: 5837-5842 

  84. National Academy of Sciences (NAS). Nickel, Medical and Biologic Effects of Environrnental Pollutants, NAS press, Washington DC, 1975; 1 -277 

  85. Nicotera P and Orrenius S. The role of calcium in apoptosis, Cell Calcium 1988; 23: 173-180 

  86. Oller, AR, Costa M and Oberdorster G. Carcinogenicity assessment of selected nickel compounds, Toxicol. Appl. Pharmacol. 1997; 143: 152-166 

  87. Patierno SR, Dirscherl LA and Xu J. transformation of rat tracheal epithelial cells to immortal growth variants by particulate and soluble nickel compounds, Mutat. Res. 1993: 300: 179-193 

  88. Pikalek P and Necasek J. The mutagenic activity of nickel in Corynebacterium sp., Folia Microbiol (Praha) 1983; 28: 17-21 

  89. Pott F, Rippe M, Roller M and Csicsaky M, Rosenbruch. Carcinogenicity of nickel compounds and nickel alloys in rats by intraperitoneal injection, in Nickel and Human Health: Current Perspectives, Wiley, New York, 1992; 491-502 

  90. Requena JR, Chao CC, Levine LR and Stadtman ER. Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins, Proc. Natl. Acad. Sci. USA 2001; 98: 69-74 

  91. Rivedal E and Sanner T. Metal salts as promoters of in vitro morphological transformation of hamster embryo cells initiated by benzo[ $\alpha$ ]pyrene, Cancer Res. 1981; 41: 2950-2953 

  92. Rosen LB, Ginty DD and Greenberg ME. Calcium regulation of gene expression, Adv. Second Messenger Phospho-protein Res. 1995; 30: 225-253 

  93. Rosetto FE, Turnbull JD and Nieboer E. Characterization of nickel-induced mutations, Sci. Total Environ. 1994; 148:201-206 

  94. Ryan HE, Lo J and Johnson RS. HIF-1 alpha is required for solid tumor formation and embryonic vascularization, EMBO J. 1998; 17: 3005-3015 

  95. Sahu RK, Katsifis SP, Kinney PL and Christie NT. Effects of nickel sulfate, lead sulfate, and sodium arsenite alone and with UV light on sister chromatid exchanges in cultured human lymphocytes, J. Mol. Toxicol. 1989; 2: 129-136 

  96. Sainte-Marie J, Lafont V, Pecheur EI and Bienvenue A. Transferrin receptor functions as a signal-transduction molecule for its own recycling via increases in the internal $Ca^2^+$ concentration, Eur. J. Biochem. 1997; 250: 689-697 

  97. Salnikow K, Cosentino S, Klein C and Costa M. Loss of thrombospondin transcriptional activity in nickel-transformed cells, Mol. Cell. Biol. 1994; 14: 851-858 

  98. Salnikow K, Wang S and Costa M. Induction of activating transcription factor I by nickel and its role as a negative regulator of thrombospondin I gene expression, Cancer Res.1997; 57: 5060-5066 

  99. Salnikow K, An WG, Melillo G, Blagosklonny MV and Costa M. Nickel-induced transformation shifts the balance between HIF-1 $\alpha$ and p53 transcription factors, Carcinogenesis 1999a; 20: 1819-1823 

  100. Salnikow K, Kluz T and Costa M. Role of $Ca^2^+$ in the regulation of nickel-inducible Cap43 gene expression, Toxicol. Appl. Pharmacol. 1999b; 160: 127-132 

  101. Salnikow K, Blagosklonny M, Ryan H, Johnson R and Costa M. Carcinogenic nickel induces genes involved with hypoxic stress, Cancer Res. 2000a; 60: 38-41 

  102. Salnikow K, Su W, Blagosklonny MV and Costa M. Carcinogenic metals induce hypoxia-inducible factor-stimulated transcription by reactive oxygen species-independent mechanism, Cancer Res. 2000b; 60: 3375-3378 

  103. Savory J, Brown S, Bertholf R, Ross R, Savory MG and Wells MR. Serum and lymphocyte nickel and aluminum concentrations in patients with extracorporeal hemodial-ysis, Annals Cli. Lab. Science 1984; 14: 413-414 

  104. Schroeder HA and Mitchener M. Toxic effects of trace elements on the reproduction of mice and rats, Arch. Environ. Health 1971, 23: 102-106 

  105. Semenza GL. Regulation of mammalian $O_2$ homeostasis by hypoxia-inducible factor 1, Annu. Rev. Cell. Dev. Biol. 1999; 15:551-578 

  106. Sen P and Costa M. Incidence and localization of sister chromatid exchanges induced by nickel and chromium compounds, Cancer Res. 1985; 7: 1527-1533 

  107. Sen P, Conway K and Costa M. Comparison of the localization of chromosome damage induced by calcium chromate and nickel compounds, Cancer Res. 1987; 47: 2142-2147 

  108. Shaywitz AJ, Greenberg ME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals, Annu. Rev. Biochem. 1999; 68: 821-861 

  109. Shiao YH, Lee SH and Kasprzak KS. cell cycle arrest, apoptosis and p53 expression in nickel (II) acetate-treated Chinese hamster ovary cells, Carcinogenesis 1998; 19: 1203-1207 

  110. Shibayama N, Morimoto H and Kitagawa T. Properties of chemically modified Ni (II)-Fe (II) hybrid hemoglobins. Ni (II) Protoporphyrin IX as a model for a permanent deoxy-heme, J. Mol. Biol. 1986; 192: 331-336 

  111. Sirover MA and Loeb LA. Infidelity of DNA synthesis in vitro: screening for potential metal mutagens and carcinogens, Science 1976; 194: 1434-1436 

  112. Smith JB, Dwyer SD and Smith L. Cadmium evokes inosi-tol polyphosphate firmation and calcium mobilization. Evidence for a cell surface receptor that cadmium stimulates and zinc antagonizes, J. Biol. Chem. 1989; 264: 7115-7118 

  113. Sunderman Jr. FW. Recent research on nickel carcinogenesis, Environ. Health Perspec. 1981; 40: 131-141 

  114. Sunderman Jr. FW. Potential toxicity from nickel contamination of intravenous fluids, Annals Cli. Lab. Science 1983; 13: 1-4 

  115. Sunderman Jr. FW. Carcinogenicity of nickel compounds in animals, in: Sunderman Jr. (Ed.), Nickel in the Human Environment, IARC Scientific Publications, Lyon, 1984; 53: 127-142 

  116. Sunderman Jr. FW. Sources of exposure and biological effects of nickel, in Environmental Carcinogens- Selected methods of Analysis, IARC Publ. 1986; 71: 79-92 

  117. Sunderman Jr. FW. Morgan LG, Andersen A, Ashley D and Forouhar FA. Histopathology of sinonasal and lung cancers in nickel refinery workers, Ann. Chn. Lab. Sci. 1989; 19: 44-50 

  118. Sunderman Jr. FW. Carcinogenicity of metal alloys in orthopedic prostheses: clinical and experimental studies, Fundam. Appl. Toxicol. 1989; 13: 205-216 

  119. Swierenga SHH, Whitfield JF, Boynton AL. Age-related and carcinogen-induced alterations of the extracellular growth factor requirements for cell proliferation in vitro, J. Cell. Physiol 1978; 94: 171-180 

  120. Talkvist J, Wing AM and Tjalve H. Enhanced intestinal nickel absorption in iron-deficient rats, Pharmacol. Toxicol 1994, 75: 244-249 

  121. Tallkvist J and Tjalve H. Transport of nickel across mono-layers of human intestinal Caco-2 cells, Toxicol. Appl. Pharmacol. 1998; 151: 117-122 

  122. Tkeshelashvili LK, Reid TM, McBride TJ and Loeb LA. Nickel induces a signature mutation for oxygen free radical damage. Cancer Res. 1993; 53: 4172-4174 

  123. Trott DA, Cuthbert AP, Overell RW, Russo I and Newbold RF. Mechanisms involved in the immortalization of mammalian cells by ionizing radiation and chemical carcinogens, Carcinogenesis 1995; 16: 193-204 

  124. Weast, editor. Handbook of chemistry and physics, 52nd ed. Cleveland: The Chemical Rubber Co., 1971 

  125. Webster JD, Parker TF, Alfrey AC, Smythe WR, Kubo H, Neal G and Hull A. Acute nickel intoxication by dialysis, Ann. Internal Med. 1980; 92: 631-633 

  126. Weghorst CM, Dragnev KH, Buzard GS, Thorne KL and Rice JM. Low incidence of point mutations detected in the p53 tumor suppressor gene from chemically induced rat renal mesenchymal tumors, Cancer Res. 1994; 154: 215-219 

  127. Zaroogian G, Yevich P and Anderson S. Effect of selected inhibitiors on cadmium, nickel, and benzo[ $\alpha$ ]pyrene uptake into brown cells of Mercenaria mercenaria, Marine Environ. Res. 1993; 35: 41-45 

  128. Zhou D, Salnikow K and Costa M. Cap43, a novel gene specifically induced by $Ni^2^+$ compounds, Cancer Res. 1998; 58: 2182-2189 

  129. Zienolddiny S, Ryberg D and Haugen A. Induction of microsatellite mutations by oxidative agents in human lung cancer cell lines, Carcinogenesis 2000; 1521-1526 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로