$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Characterization of via etch by enhanced reactive ion etching 원문보기

한국결정성장학회지 = Journal of the Korean crystal growth and crystal technology, v.14 no.6, 2004년, pp.236 - 243  

Bae, Y.G. (Department of Electronic Engineering, Hanseo University) ,  Park, C.S. (Department of Electronic Engineering, Hanseo University)

Abstract AI-Helper 아이콘AI-Helper

The oxide etching process was characterized in a magnetically enhanced reactive ion etching (MERIE) reactor with a $CHF_3CF_4$ gas chemistry. A statistical experimental design plus one center point was used to characterize relationships between process factors and etch response. The etch ...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The etch responses modeled are etch rate, etch selectivity to TiN, and uni­ formity. The developed models were then utilized to produce 3D response plots.
  • In this study, neural network is used to model character­ istics of oxide film etched in CHF3/CF4/Ar gas chemistry. A magnetically enhanced reactive ion etcher (MERIE) was used for etching.
  • Experimental ranges of fac­ tors are contained in Table 1. Resultant 9 experiments were used to train neural networks and trained net­ works were tested on 8 experiments were additionally conducted and thus a total of 17 experiments were per­ formed to develop a predictive etch model.
  • The output layer transmits the data and thus corresponds to the various plasma attributes (electron density, electron temperature, and plasma potential). In this study, the number of neurons in the outp니t layer was set to unity since each attribute was modeled one by one. BPNN also incorporates "hidden" layers of neu­ rons that do not interact with the outside world, but assists in performing nonlinear feature extraction on the data provided by the input and output layers.
  • Ib get the knowledge about reaction mechanism related to CF4/CHF3 gas composition, active species to be gen­ erated in the plasma and etch residues on etched SiO2 surface as a ftmction of gas composition were analyzed by using optical emission spectroscopy (OES) and x-ray photoelectron spectroscopy (XPS), respectively. XPS (ESCALAB 200R_VG Scientific) analyses have been performed by collecting Cis and FIs regions at pass energies of 20 eV with AlKa x-ray source at take-off angles of 90°.
  • respectively. Prior to this work, we examined the etching rate of TiN films with various CF4 gas flow rates and found out the increase of TiN etch rate with increasing CF4 gas flow rates. The report described that TiFx (x = 3~4) was etching by-products and the forma­ tion of TiFx (x = 3~4) depended on F radical density.
본문요약 정보가 도움이 되었나요?

참고문헌 (9)

  1. R.J. Schutz, in VLSI Technology, 2nd ed., edited by S.M. Sze (McGraw-Hill, New York, 1988) 

  2. J.M. Cook and K.G. Donohoe, 'Etching issues at 0.35 $\mu$ n and below', Solid State Technolog 34 (1991) 119. 

  3. B. Kim, J. Sun, C. Choi, D. Lee and Y. Seol, 'Use of neural networks to model low-temperature tungsten etch characteristics in high density $SF_6$ plasma', J. Vac. Sci. Technol. A18 (2000) 417 

  4. C.D. Himmel and G.S. May, 'Advantages of plasma etch modeling using neural networks over statistical techniques', IEEE Trans. Semicond. Manufact. 6 (1993) 103 

  5. B. Kim and G.T. Park, 'Modeling plasma equipment using neural networks', IEEE Trans Plasma Sci. 29(2001) 8 

  6. S.H. Oh and S.Y. Lee, 'An adaptive learning rate with limited error signals for training of multilayer perceptrons', ETRI Journal 22(4) (2000) 40 

  7. D.C. Mongomery, Design and Analysis of Experiments (John Wiley & Sons, 1991) 

  8. D.E. Rummelhart and J.L. McClelland, Parallel Distributed Processing (Cambridge, M.LT. Press, 1986) 

  9. B. Kim and G.S. May, 'An optimal neural network process model for plasma etching', IEEE Trans. Semicondo Manufact. 7 (1994) 12 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로