밭작물에 대한 규산질 비료의 시용이 널리 이루어지고 있으나 적정시용수준이 밝혀져 있지 못하며 또한 밭토양에서의 유효규산 측정방법이 구명되어있지 못한 실정이다. 본 연구는 참외 시설재배지 토양에 대하여 유효규산 측정방법을 구명하기 위해 수행되었다. 경북 성주지역의 참외 시설재배지,10개소의 토양과 참외 잎 시료를 채취하여 가용성 토양 규산 함량과 잎 중의 총 규산 함량을 분석하였다. 가용성 토양 규산은 0.5 N HCI, 1 N sodium acetate buffer (pH 4.0). citric acid 1%, water, Tris buffer (pH 7.0), 그리고 1주간 담수하는 방법 등으로 추출하였으며, 식물체 규산은 autoclave 방법으로 추출하였다. 추출액중의 가용성 규산은 비색법으로 정량하였다. 각 추출방법별로 가용성 토양규산 함량과 식물체규산 함량과의 관계를 비교하였는데, 1 N sodium acetate buffer 방법이 토양 규산과 식물체 규산 관계를 가장 뚜렷한 포화곡선으로 나타내었다. 포화곡선으로부터 산출된 참외 잎 중의 포화 규산 함량은 약 $14g\;SiO_2\;kg^{-1}$이었고 1 N sodium acetate buffer 방법으로 추출할 경우토양 규산 함량 $120mg\;SiO_2\;kg^{-1}$이 참외에 적정한 수준인 것으로 나타났다. 특히 1 N sodium acetate buffer방법의 경우 참외 잎 중의 규산 함량이 포화되는 수준 이하의 토양 규산 함량 범위에서는 토양 규산 함량과 식물체 규산 함량 사이에 유의성 있는 상관관계가 있었다. 따라서 현재 우리나라에서 논토양의 유효규산 측정방법으로 널리 사용퇴고 있는 1 N sodium acetate buffer를 이용한 유효규산 추출방법이 밭토양에도 적용될 수 있을 것으로 판단되나 앞으로 다양한 작물과 토양을 대상으로 계속적인 연구가 요구된다.
밭작물에 대한 규산질 비료의 시용이 널리 이루어지고 있으나 적정시용수준이 밝혀져 있지 못하며 또한 밭토양에서의 유효규산 측정방법이 구명되어있지 못한 실정이다. 본 연구는 참외 시설재배지 토양에 대하여 유효규산 측정방법을 구명하기 위해 수행되었다. 경북 성주지역의 참외 시설재배지,10개소의 토양과 참외 잎 시료를 채취하여 가용성 토양 규산 함량과 잎 중의 총 규산 함량을 분석하였다. 가용성 토양 규산은 0.5 N HCI, 1 N sodium acetate buffer (pH 4.0). citric acid 1%, water, Tris buffer (pH 7.0), 그리고 1주간 담수하는 방법 등으로 추출하였으며, 식물체 규산은 autoclave 방법으로 추출하였다. 추출액중의 가용성 규산은 비색법으로 정량하였다. 각 추출방법별로 가용성 토양규산 함량과 식물체규산 함량과의 관계를 비교하였는데, 1 N sodium acetate buffer 방법이 토양 규산과 식물체 규산 관계를 가장 뚜렷한 포화곡선으로 나타내었다. 포화곡선으로부터 산출된 참외 잎 중의 포화 규산 함량은 약 $14g\;SiO_2\;kg^{-1}$이었고 1 N sodium acetate buffer 방법으로 추출할 경우토양 규산 함량 $120mg\;SiO_2\;kg^{-1}$이 참외에 적정한 수준인 것으로 나타났다. 특히 1 N sodium acetate buffer방법의 경우 참외 잎 중의 규산 함량이 포화되는 수준 이하의 토양 규산 함량 범위에서는 토양 규산 함량과 식물체 규산 함량 사이에 유의성 있는 상관관계가 있었다. 따라서 현재 우리나라에서 논토양의 유효규산 측정방법으로 널리 사용퇴고 있는 1 N sodium acetate buffer를 이용한 유효규산 추출방법이 밭토양에도 적용될 수 있을 것으로 판단되나 앞으로 다양한 작물과 토양을 대상으로 계속적인 연구가 요구된다.
Soil testing for silicon (Si) in the upland soils has not been sufficiently investigated. The objective of this study was to identify a suitable Si extraction method for upland soils of oriental melon (Cucumis melo L.). Thirty-eight surface soil samples and matured leaf samples were collected from p...
Soil testing for silicon (Si) in the upland soils has not been sufficiently investigated. The objective of this study was to identify a suitable Si extraction method for upland soils of oriental melon (Cucumis melo L.). Thirty-eight surface soil samples and matured leaf samples were collected from plastic film houses in Sungju, Gyeongbuk province. In the laboratory, six different methods were used for extracting Si from the soils. The methods included 0.5 N HCl extraction, 1 N sodium acetate buffer (PH 4.0) extraction, citric acid 1% extraction, water extraction, Tiis buffer pH 7.0 extraction, and extraction after incubation with water for 1 week. The concentration of dissolved Si in soil extracts from all methods was determined colorimetrically. With 1 N sodium acetate buffer extraction, as the available soil Si increased, the concentration ofSi in oriental melon leaf increased until around $14g\;SiO_2\;kg^{-1}$ was reached in the form of a saturation curve. Also, among the methods studied, extraction with 1 N sodium acetate buffer was the only method provided a significant linear correlation with oriental melon leaf Si content in the range of extractable soil Si lower than the level which inducing Si saturation in oriental melon leaf. These results indicate that 1 N sodium acetate buffer extraction procedure is the best soil Si test method for upland soils of oriental melon. This sodium acetate buffer extraction procedure is rapid and quite well acquainted with scientists and farmers, since the method has been used for routine paddy soil testing.
Soil testing for silicon (Si) in the upland soils has not been sufficiently investigated. The objective of this study was to identify a suitable Si extraction method for upland soils of oriental melon (Cucumis melo L.). Thirty-eight surface soil samples and matured leaf samples were collected from plastic film houses in Sungju, Gyeongbuk province. In the laboratory, six different methods were used for extracting Si from the soils. The methods included 0.5 N HCl extraction, 1 N sodium acetate buffer (PH 4.0) extraction, citric acid 1% extraction, water extraction, Tiis buffer pH 7.0 extraction, and extraction after incubation with water for 1 week. The concentration of dissolved Si in soil extracts from all methods was determined colorimetrically. With 1 N sodium acetate buffer extraction, as the available soil Si increased, the concentration ofSi in oriental melon leaf increased until around $14g\;SiO_2\;kg^{-1}$ was reached in the form of a saturation curve. Also, among the methods studied, extraction with 1 N sodium acetate buffer was the only method provided a significant linear correlation with oriental melon leaf Si content in the range of extractable soil Si lower than the level which inducing Si saturation in oriental melon leaf. These results indicate that 1 N sodium acetate buffer extraction procedure is the best soil Si test method for upland soils of oriental melon. This sodium acetate buffer extraction procedure is rapid and quite well acquainted with scientists and farmers, since the method has been used for routine paddy soil testing.
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
제안 방법
The objective of this study was to evaluate various methods for determining available Si in upland soil by examining the correlation between the extracted soil Si and Si in oriental melon leaf.
(2001) evaluated several different soil test procedures for determining available Si for rice. The test procedures included 0.5 M acetic acid extraction, citric acid 1%, deionized water, Tris buffer pH 7.0, water-bath shaking, incubation with water for 1 week at 40℃, and incubation with water for 4 week at 30℃. They found that the 0.
대상 데이터
Oriental melon leaf samples were collected from the plastic film houses where soil samples were collected. Fully expanded leaves were selected, dried at 60℃ and ground in a stainless steel mill to pass through a 0.
후속연구
This method is rapid and requii'es only two days for obtaining the results, and is quite well acquainted with scientists and farmers since the method has been used for paddy soil testing. But, since relatively small number of soils were used in this analysis, more extensive tests for upland soils are further required to verify the results of this study.
참고문헌 (28)
Adatia, M. H., and R. T. Besford. 1986. The effects of silicon on cucumber plants grown in recirculating solution. Ann. Bot. 58:343-351
Anderson, D. L., D. B. Jones, and G. H. Snyder. 1987. Response of a rice-sugarcane rotation to calcium silicate slag on Everglade Histosol. Agron. J. 79:531-535
Barbosa-Filho, M. P., G. H. Snyder, C. L. Elliott, and L. E. Datnoff. 2001. Evaluation of soil test procedures for determining rice-available silicon. Commun. Soil Sci. Plant Anal. 32:1779-1792
de Lima Rodrigues, L., S. Daroub, R. Rice, and G. Snyder. (2003) Comparison of three soil test methods for estimating plant-available silicon. Commun. Soil Sci. Plant Anal. 34:2059-2071
Edward, S. H., G. J. Gascho, and J. J. Street. 1982. Response of sugarcane to silicate source and rate. I. Growth and yield. Agron. J. 74:481-484
Elliott, C. L., and G. H. Snyder. 1991. Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J. Agric. Food Chem. 39:1118-1119
Hallmark, C. T., L. P. Wilding, and N. E. Smeck. 1982. Silicon. p. 263-273. In A. L. Page et al. (ed.) Methods of soil analysis. Part 2: Chemical and microbiological properties. Soil Science Society of America, Madison, WI, USA
Imaizumi, K., and S. Yoshida. 1958. Edaphological studies on silicon supplying power of paddy soils. Bull. Natl. Inst. Agric. Sci. (Jpn.) B. 8:261-304
Kato, N., and N. Owa. 1990. Dissolution mechanism of silicate slag fertilizers in paddy soils. XIV Intern. Congr. Soil Sci., Kyoto, Japan. 4:609-610
Lee, Y. H., D. U. Choi, and K. H. Han. 1973. Effect of wollastonite on silica uptake by rice plant. J. Korean Soc. Soil. Fert. 6:221-226
Lewin, J., and B. E. F. Reimann. 1969. Silicon and plant growth. Ann. Rev. Plant Physiol. 20:289-304
Liang, Y. C., T. S. Ma, F. J. Li, and Y. J. Feng. (1994) Silicon availability and responses of rice and wheat to silicon in calcareous soils. Commun. Soil Sci. Plant Anal. 25:2285-2297
Nelson, D. W., and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. p. 539-579. In A. L. Page et al. (ed.) Methods of soil analysis. Part 2: Chemical and microbiological properties. Soil Science Society of America, Madison, WI, USA
Nonaka, K., and K. Takahashi. 1990. A method of assessing the need of silicate fertilizers in paddy soils. XIV Intern. Congr. Soil Sci., Kyoto, Japan. 4:513-514
Okuda, A., and E. Takahashi. 1964. The role of silicon. p. 123-146. In The mineral nutrition of the rice plant. Proc. Symp., International Rice Research Institute, Los Banos, Laguna, Philippines
Park, C. S. 1970. Studies on the relation between available silica content and the effect of silicate, the distribution pattern of available silica content and requirement in Korean paddy top soil. RDA Res. Rept. (Plant Environment) 13:1-29
Park, Y. D., Y. S. Kim, and D. W. Mang. 1971. The effect of increased application of silica, nitrogen, and potassium on rice growth on Akiochi soils. J. Korean Soc. Soil. Fert. 4:161-166
Savant, N. K., G. H. Snyder, and L. E. Datnoff. 1997. Silicon management an sustainable rice production. Adv. Agron. 58:151-199
Sumida, H. 1992. Silicon supplying capacity of paddy soils and characteristics of silicon uptake by rice plants in cool regions in Japan. Bull. Tohoku Natl. Agric. Exp. Stn. 85:1-46
Takahashi, E., and J. F. Ma, and Y. Miyake. 1990. The possibility of silicon as an essential element for higher plants. Comments Agric. Food. Chem. 2:99-102
Valmis, J., and D. E. Williams. 1967. Manganese and silicon interactions in the Gramineae. Plant Soil 27:131-140
Xu, G., X. Zhan, C. Li, S. Bao, X. Liu, and T. Chu. (2001) Assessing methods of available silicon in calcareous soils. Commun. Soil Sci. Plant Anal. 32:787-801
※ AI-Helper는 부적절한 답변을 할 수 있습니다.