$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

메모리 기반의 기계 학습을 이용한 한국어 문장 경계 인식

Korean Sentence Boundary Detection Using Memory-based Machine Learning

초록

본 논문은 기계 학습 기법 중에서 메모리 기반 학습을 사용하여 범용의 학습 가능한 한국어 문장 경계 인식기를 제안한다. 제안한 방법은 메모리 기반 학습 알고리즘 중 최근린 이웃(kNN) 알고리즘을 사용하였으며, 이웃들을 이용한 문장 경계 결정을 위한 스코어 값 계산을 위한 다양한 가중치 방법을 적용하여 이들을 비교 분석하였다 문장 경계 구분을 위한 자질로는 특정 언어나 장르에 제한적이지 않고 범용으로 적용될 수 있는 자질만을 사용하였다. 성능 실험을 위하여 ETRI 코퍼스와 KAIST 코퍼스를 사용하였으며, 성능 척도로는 정확도와 재현율이 사용되었다. 실험 결과 제안한 방법은 적은 학습 코퍼스만으로도 $98.82\%$의 문장 정확률과 $99.09\%$의 문장 재현율을 보였다.

Abstract

This paper proposes a Korean sentence boundary detection system which employs k-nearest neighbor algorithm. We proposed three scoring functions to classify sentence boundary and performed comparative analysis. We uses domain independent linguistic features in order to make a general and robust system. The proposed system was trained and evaluated on the two kinds of corpus; ETRI corpus and KAIST corpus. As experimental results, the proposed system shows about $98.82\%$ precision and $99.09\%$ recall rate even though it was trained on relatively small corpus.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (1)

  1. Lee, Chung-Hee ; Jang, Myung-Gil ; Seo, Young-Hoon 2010. "Improved Sentence Boundary Detection Method for Web Documents" 정보과학회논문지. Journal of KIISE. 소프트웨어 및 응용, 37(6): 455~463 

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일