검색연산자 | 기능 | 검색시 예 |
---|---|---|
() | 우선순위가 가장 높은 연산자 | 예1) (나노 (기계 | machine)) |
공백 | 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 | 예1) (나노 기계) 예2) 나노 장영실 |
| | 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 | 예1) (줄기세포 | 면역) 예2) 줄기세포 | 장영실 |
! | NOT 이후에 있는 검색어가 포함된 문서는 제외 | 예1) (황금 !백금) 예2) !image |
* | 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 | 예) semi* |
"" | 따옴표 내의 구문과 완전히 일치하는 문서만 검색 | 예) "Transform and Quantization" |
본 논문은 기계 학습 기법 중에서 메모리 기반 학습을 사용하여 범용의 학습 가능한 한국어 문장 경계 인식기를 제안한다. 제안한 방법은 메모리 기반 학습 알고리즘 중 최근린 이웃(kNN) 알고리즘을 사용하였으며, 이웃들을 이용한 문장 경계 결정을 위한 스코어 값 계산을 위한 다양한 가중치 방법을 적용하여 이들을 비교 분석하였다 문장 경계 구분을 위한 자질로는 특정 언어나 장르에 제한적이지 않고 범용으로 적용될 수 있는 자질만을 사용하였다. 성능 실험을 위하여 ETRI 코퍼스와 KAIST 코퍼스를 사용하였으며, 성능 척도로는 정확도와 재현율이 사용되었다. 실험 결과 제안한 방법은 적은 학습 코퍼스만으로도
This paper proposes a Korean sentence boundary detection system which employs k-nearest neighbor algorithm. We proposed three scoring functions to classify sentence boundary and performed comparative analysis. We uses domain independent linguistic features in order to make a general and robust system. The proposed system was trained and evaluated on the two kinds of corpus; ETRI corpus and KAIST corpus. As experimental results, the proposed system shows about
원문 PDF 다운로드
원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)
DOI 인용 스타일