$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 신생아 장내 미생물의 형성과 이의 분석을 위한 분자 생태학적 기술
Development of Intestinal Microorganisms and Molecular Ecological Methods for Analysis of Intestinal Ecosystem in the Neonate 원문보기

한국미생물·생명공학회지 = Korean journal of microbiology and biotechnology, v.33 no.3, 2005년, pp.159 - 168  

박자령 (한국생명공학연구원 생물자원센터, 연세대학교 생명공학과) ,  배진우 (한국생명공학연구원 생물자원센터) ,  이성근 (충북대학교 미생물학과) ,  남영도 (한국생명공학연구원 생물자원센터) ,  오종원 (연세대학교 생명공학과) ,  박용하 (한국생명공학연구원 생물자원센터)

초록
AI-Helper 아이콘AI-Helper

인간의 장(腸)은 태어날 때만 해도 무균 상태이지만 태어나면서 산모나 주위 환경에 의해 미생물이 형성되기 시작한다. 미생물은 숙주 안에서 면역, 영양학적, 생리학적, 보호과정 등의 특징을 유발시키며, 밀접한 상호작용을 한다[6,24, 35]. 많은 연구를 통해 장내 미생물이 우리에게 주는 이로운 점들이 밝혀 지긴 했지만, 우리가 목표로 하는 장내 미생물이 숙주의 장내, 건강 상태를 조절하는 메커니즘은 아직 뚜렷하게 밝혀 지지 않고 있다. 즉, 숙주(인간)의 건강의 상태를 결정지어 주는 장내미생물 biomarker의 확립이 아직 불분명한 상태이다. 장내미생물의 방대한 다양성으로 인하여, 이를 연구하기 위한 분자 생태학 기술의 올바른 접목과 더 나은 방향으로의 기술 발전이 필요하다. 앞으로 더 나은 기술 개발을 통해, 신생아 장내의 초기에 형성되는 미생물을 검출하고, 여러 외부 요인에 따라 어떻게 연속되어 가면서 어떠한 역할을 하는지를 밝힐 수 있다면, 질병 치료뿐 아니라 예방도 가능해 질 것이다.

Abstract AI-Helper 아이콘AI-Helper

Up to date, a number of review papers were reported on intestinal microorganisms that influence the health and disease of human being and diet that directly influence the establishment of intestinal microbial populations. Importance of studying intestinal microorganisms in the neonate arises from th...

주제어

참고문헌 (53)

  1. Amann, R. I., B. J. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, and D. A. Stahl 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56: 1919-1925 

  2. Amann, R. I., W. Ludwig. and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169 

  3. Bartosch, S., A. Fite, G. T. Macfarlane, and M. E. McMurdo. 2004. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl. Environ. Microbiol. 70: 3575-3581 

  4. Bennet, R., M. Eriksson, C. E. Nord, and R. Zetterstrom 1982. Suppression of aerobic and anaerobic faecal flora in newborns receiving parenteral gentamicin and ampicillin. Acta Paediatr Scand. 71: 559-562 

  5. Benno, Y., K. Sawada, and T. Mitsuoka. 1984. The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants. Microbiol. Immunol. 28: 975-986 

  6. Berg, R. 1996. The indigenous gastrointestinal microflora. Trends Microbiol. 4: 430-435 

  7. Bezirtzoglou, E. 1997. The intestinal microflora during the first weeks of life. Anaerobe 3: 173-177 

  8. Bullen, C. L., P. V. Tearle, and M. G Stewart. 1977. The effect of 'hurnanised' milks and supplemented breast feeding on the faecal flora of infants. J. Med. Microbiol. 10: 403-413 

  9. Kunz, C., S. Rudloff, W. Baier, N. Klein, and S. Strobel. 2000. Oligosaccharides in human milk: structural, functional and metabolic aspects. Annu. Rev. Nutr. 20: 699-722 

  10. Chizhikov, V., A. Rasooly, K. Chumakov, and D. D. Levy. 2001. Microarray analysis of microbial virulence factors. Appl. Environ. Microbiol. 67: 3258-3263 

  11. Favier, C. F., W. M. de Vos., and A. D. Akkermans 2003. Development of bacterial and bifidobacterial communities in feces of newborn babies. Anaerobe 9: 219-229 

  12. Favier, C. F., E. E. Vaughan, W. M. de Vos, and A. D. Akkermans 2002. Molecular monitoring of succession of bacterial communities in human neonates. Appl. Environ. Microbiol. 68: 219-226 

  13. Franks, A. H., H. J. Harmsen, G. C. Raangs, G. J. Jansen, F. Schut, and G. W Welling. 1998. Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol. 64: 3336-3345 

  14. Haarman, M., and J. Knol. 2005. Quantitative real-time PCR assays to identify and quantify fecal Bifidobacterium species in infants receiving a prebiotic infant formula. Appl. Environ. Microbiol. 71: 2318-2324 

  15. Harmsen, H. J., A. C. M. Wildeboer-Veloo, J. Grijpstra, J. Knol, J. E. Degener, and G. W. Welling. 2000. Development of 16S rRNA-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups. Appl. Environ. Microbiol. 66: 4523-4527 

  16. Heilig, H. G., E. G. Zoetendal, E. E. Vaughan, P. Marteau, A. D. Akkermans, and W. M. de Vos. 2002. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl. Environ. Microbiol. 68: 114-123 

  17. Harmsen, H. J., G. C. Raangs, A. H. Franks, A. C. M. Wildeboer-Veloo, and G. W. Welling. 2002. The Effect of the Probiotic Inulin and the Probiotic Bifidobacterium longum on the Fecal Microflora of Healthy Volunteers Measured by FISH and DGGE. Microb. Ecol. Health Dis. 14: 211-219 

  18. Holzapfel, W H., P. Haberer, J. Snel, U. Schillinger, and Huis in't Veld. 1998. Overview of gut flora and probiotics. Int. J. Food Microbiol. 41: 85-101 

  19. Lay, C., M. Sutren, V. Rochet, K. Saunier, J. Dore, and L. Rigottier-Gois. 2005. Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ. Microbiol. 7: 933-946 

  20. Ludwig, W., S. Dorn, N. Springer, G. Kirchhof, and K.H. Schleifer. 1994. PCR-based preparation of 23S rRNAtargeted group-specific polynucleotide probes. Appl. Environ. Microbiol. 60: 3236-3244 

  21. Lundequist, B., C. E. Nord, and J. Winberg. 1985. The composition of the faecal microflora in breastfed and bottle fed infants from birth to eight weeks. Acta Paediatr Scand. 74: 45-51 

  22. Matto. J., E. Malinen., M.-L. Suihko, M. Alander, A. Paiva, and M. Saarela. 2004. Genetic heterogeneity and functional properties of intestinal Bifidobacteria. J. Appl. Microbiol. 97: 459-470 

  23. MacGregor, R. R. 3rd, and W.W. Jr. Tunnessen. 1973. The incidence of pathogenic organisms in the normal flora of the neonate's external ear and nasopharynx. Clin. Pediatr. (Phila) 12: 697-700 

  24. Mackie, R. I., S. Alune, and H. R. Gaskins. 1999. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 69: 1035S-1045S 

  25. Muyzer, G., E. C. de Waal, and A.G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700 

  26. Torun, M. M., H. Bahar, E. GUr, Y. Tatan, M. Alikaifolu, and A. Arvas. 2002. Anaerobic fecal tlora in healthy beast-fed Turkish babies born by different methods. Anaerobe 8: 63-67 

  27. Niewold, T. A., H. H. Kerstens, J. van der Meulen, M. A. Smits, and M. M. Hulst. 2005. Development of a porcine small intestinal cDNA micro-array: characterization and functional analysis of the response to enterotoxigenic E. coli. Vet. Immunol. Immunopathol. 105: 317-329 

  28. Brigidi, P., B. Vitali, E. Swennen, G. Bazzocchi, and D. Matteuzzi. 2001. Effects of probiotic administration upon the composition and enzymatic activity of human fecal microbiota in patients with irritable bowel syndrome or functional diarrhea. Res. Microbial. 152: 735-741 

  29. Eckburg, P. B., E. M. Bike, C. N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, S. R. Gill, K. E. Nelson, D. A. Reiman. 2005. Diversity of the human intestinal microbial tlora. Science 308(5728): 1635-1638 

  30. Namsolleck, P., R. Thiel, P. A. Lawson, K. Holmstrom, M. Rajilic, E. E. Vaughan, L. Rigottier-Gois, M. D. Collins, W. M. de Vos, and M. Blaut. 2004. Molecular methods for the analysis of gut microbiota. Microb. Ecol. Health Dis. 16: 71-85 

  31. Reid, G., J. Jass, M. T. Sebulsky, and J. K. McCormick. 2003. Potential uses of probiotics in clinical practice. Clin. Microbiol. Rev. 16: 658-672 

  32. Reiman, D. A and S. Falkow. 2001. The meaning and impact of the human genome sequence for microbiology. Trends Microbiol. 9: 206-208 

  33. Rigottier-Gois, L., V. Rochet, N. Garrec, A Suau, and J. Dore. 2003. Enumeration of Bacteroides species in human faeces by tluorescent in situ hybridisation combined with tlow cytometry using 16S rRNA probes. Syst. Appl. Microbiol. 26: 110-118 

  34. Roc'o Mart'na, S. L., M. A. Carlota Reviriegoa, E. Jime' neza, M. N. O. L. Mar' na, J. S. J. N. Julio Bozab, L. Ferna' ndeza, J. X. A. Juan, and M. Rodr'gueza. 2004. The commensal microtlora of human milk: new perspectives for food bacteriotherapy and probiotics. Trends Food Sci. Technol. 15: 121-127 

  35. Mackie, R. I., S. Alune, and H. R. Gaskins. 1999. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 69: 1035S-1045S 

  36. Sakata, S., T. Tonooka, S. lshizeki, M, Takada, M. Sakamoto, M. Fukuyama, and Y. Benno. 2005. Culture-independent analysis of fecal microbiota in infants, with special reference to Bifidobacterium species. FEMS Microbiol. Lett. 243: 417-423 

  37. Meance, S., C. Cayuela, A. Raimondi, P. Turchet, C. Lucas, and J. M. Antoine. 2003. Recent advances in the use of functional foods: effects of the commercial fermented milk with Bifidobacterium animalis strain DN-173 010 and yoghurt strains on gut transit time in the elderly. Microb. Ecol. Health Dis. 15: 15-22 

  38. Simhon, A., J. R. Douglas, B. S. Drasar, and J. F. Soothill. 1982. Effect of feeding on infant's faecal flora. Arch. Disease in Childhood 57: 54-58 

  39. Songjinda, P., J. Nakayama, Y. Kuroki, S. Tanaka, S. Fukuda, C. Kiyohara, T. Yamamoto, K. lzuchi, T. Shirakawa, and K. Sonomoto. 2005. Molecular monitoring ofthe developmental bacterial community in the gastrointestinal tract of Japanese infants. Biosci. Biotechnol. Biochem. 69: 638-641 

  40. Sprunt, K. and G. Leidy. 1988. The use of bacterial interference to prevent infection. Can. J. Microbiol. 34: 332-338 

  41. Matsuki, T., K.Watanabe, J. Fujimoto, Y. Miyamoto, T. Takada, K. Matsumoto, H. Oyaizu, and R. Tanaka. 2002. Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl. Environ. Microbiol. 68: 5445-5451 

  42. Tannock, G. W. 1997. Probiotic properties of lactic-acid bacteria: plenty of scope for fundamental R&D. Trends Biotechnol. 15: 270-274 

  43. Tannock, G. W., R. Fuller, S. L. Smith, and M. A. Hall. 1990. Plasmid profiling of members of the family Enterobacteriaceae, Lactobacilli, and Bifidobacteria to study the transmission of bacteria from mother to infant. J. Clin. Microbiol. 284: 1225-1228 

  44. Wang, R. F., M. L. Beggs, B. D. Erickson, and C. E. Cemiglia. 2004. DNA microarray analysis of predominant human intestinal bacteria in fecal samples. Mol. Cell Probes 18: 223-234 

  45. Wang, R. F., M. L. Beggs, L. H. Robertson, and C. E. Cerniglia. 2002. Design and evaluation of oligonucleotidemicroarray method for the detection of human intestinal bacteria in fecal samples. FEMS Microbiol. Lett. 213: 175-182 

  46. Wang, R. F., S. J. Kim, L. H. Robertson, and C. E. Cemiglia. 2002. Development of a membrane-array method for the detection of human intestinal bacteria in fecal samples. Mol. Cell Probes 16: 341-350 

  47. Weisburg, W. G, S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703 

  48. Wu, L., D. K. Thompson, G Li, R. A. Hurt, J. M. Tiedje, and J. Zhou. 2001. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl. Environ. Microbiol. 67: 5780-5790 

  49. X. W. Huijsdens, R. K. Linskens, J. Koppes, Y. L. Tang, S. G. Meuwissen, C. M. Vandenbroucke-Grauls, and P. H. Savelkoul. 2004. Detection of Helicobacter species DNA by quantitative PCR in the gastrointestinal tract of healthy individuals and of patients with inflammatory bowel disease. FEMS Immunol. Med. Microbiol. 41: 79-84 

  50. Yoshioka, H., K. Iseki, and K. Fujita. 1983. Development and differences of intestinal flora in the neonatal period in breast-fed and bottle-fed infants. Pediatrics 72: 317-321 

  51. Hingoh, Y, M. Ohkuma, and T. Kudo. 2003. Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidate). FEMS Microbiol Ecol. 44: 231-242 

  52. Zoetendal, E. G, A. D. Akkermans, and W. M. De Vos. 1998. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64: 3854-3859 

  53. Zoetendal, E. G, K. Ben-Amor, H. J. Harmsen, F. Schut, A. D. Akkermans, and W. M. de Vos. 2002. Quantification of uncultured Ruminococcus obeum-like bacteria in human fecal samples by fluorescent in situ hybridization and flow cytometry using 16S rRNA-targeted probes. Appl. Environ. Microbiol. 68: 4225-4232 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로