$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Role of Arbuscular Mycorrhizal Fungi in Phytoremediation of Soil Rhizosphere Spiked with Poly Aromatic Hydrocarbons

Mycobiology v.33 no.1 , 2005년, pp.41 - 50  
Abstract

Results from an innovative approach to improve remediation in the rhizosphere by encouraging healthy plant growth and thus enhancing microbial activity are reported. The effect of arbuscular mycorrhizal fungi (Am) on remediation efficacy of wheat, mungbean and eggplant grown in soil spiked with polyaromatic hydrocarbons (PAH) was assessed in a pot experiment. The results of this study showed that Am inoculation enhanced dissipation amount of PAHs in planted soil, plant uptake PAHs, dissipation amount of PAHs in planted versus unplanted spiked soil and loss of PAHs by the plant-promoted biodegradation. A number of parameters were monitored including plant shoot and root dry weight, plant tissue water content, plant chlorophyll, root lipid content, oxido-reductase enzyme activities in plant and soil rhizosphere and total microbial count in the rhizospheric soil. The observed physiological data indicate that plant growth and tolerance increased with Am, but reduced by PAH. This was reflected by levels of mycorrhizal root colonization which were higher for mungbean, moderate for wheat and low for eggplant. Levels of Am colonization increased on mungbean > wheat > eggplant. This is consistent with the efficacy of plant in dissipation of PAHs in spiked soil. Highly significant positive correlations were shown between of arbuscular formation in root segments (A)) and plant water content, root lipids, peroxidase, catalase polyphenol oxidase and total microbial count in soil rhizosphere as well as PAH dissipation in spiked soil. As consequence of the treatment with Am, the plants provide a greater sink for the contaminants since they are better able to survive and grow.

참고문헌 (51)

  1. Ajithkumar, P. V., Gangadhara, K. P., Manilal, P. and Kunhi, A. A. 1998. Soil inoculation with Pseudomonas aeruginosa 3mT eliminates the inhibitory effect of 3-chloro- and 4-chlorobenzoate on tomato seed germination. Soil Biol. Chem. 30: 1053-1059 
  2. Alef, K. and Nannipieri, P. 1995. Methods in Applied Soil Microbiology and Biochemistry. Academic Press, London, Pp. 362 
  3. Ashcroft, G. L. and Browen, A. D. 1983. Discovering soils. In: A laboratory Manual for general soils. Utah State University, USA 
  4. Beers, R. F. and Sizer, I. W. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195: 133-140 
  5. Binet, P., Portal, J. M. and Leyval, C. 2000. Dissipation of 36ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass. Soil Biol. Biochem. 32: 2011-2017 
  6. Burd, G. I., Dixon, D. G. and Glick, B. G. 1998. Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Appl. Environ. Microbiol. 64: 3663-3669 
  7. Chekol, T., Vough, L. R. and Chaney, R. L. 2004. Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Environ Inter. 30: 799-804 
  8. Folch, J., Lees, M. and Stoane-stanley, G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 226: 497-509 
  9. Entry, J. A., Rygiewicz, P. T, Watrud, L. S. and Donnelly, P. K 2002. Influence of adverse soil conditions on the formation and function of Arbuscular mycorrhizas. Adv. in Environ. Res. 7: 123-138 
  10. Gao, Y. and Zhu, L. 2004. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere 55(9): 1169-1178 
  11. Glick, R. B. 2003. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotech. Advances 21: 383-393 
  12. Graham, J. H., Leonard, R. T and Meng, J. A. 1981. Membranemediated decrease in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiol. 68: 549-552 
  13. Gramss, G., Voigt, K.-D. and Kirsche, B. 1999. Oxido-reductase enzymes librated by plant roots and their effects on soil humic material. Chemosphere 38: 1481-1494 
  14. Harbome, B. 1984. Photochemical methods. A guide to modem techniques of plant analysis. Chapman & Hall Press, London 
  15. Hooker, J. E. and Atikinson, D. 1996. Arbuscular mycorrhizal fungi- induced alteration to tree-root architecture and longevity, Zpflanzenemahr Bodenkd 159: 229-234 
  16. Huang, X.-D., Glick, B. R. and Greenberg, M. B. 2001. Combining remediation technologies increases kinetics for removal of persistent organic contaminants from soil. Pp. 271-278. In: Greenberg, B. M., Ruth, N. H., Roberts, H. M. and Gensemer, W. R. Eds. Environmental Toxicology and Risk Assessment. Vol. 10: ASTM 
  17. Huang, X.-D., EI-Alawi Y., Penrose, D. M., Glick, B. R. and Greenberg, B. M. 2004a. Responses of three grass species to creosote during Phytoremediation. Environ Poll. 130: 453-463 
  18. Joner, E. J. and Leyval, C. 2001. Influence of arbuscular mycorrhiza on clover and ryegrass grown together in a soil spiked with polycyclic aromatic hydrocarbons. Mycorrhiza 10: 155-159 
  19. Joner, E. J., Corgie, S. C., Amellal, N. and Leyval, C. 2002. Nutritional contributions to degradation of polycyclic aromatic hydrocarbons in a simulated rhizosphere. Soil Biol. Biochem. 34: 859-864 
  20. Joner, E. J. and Leyval, C. 2003. Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils and the impact of arbuscular Mycorrhiza. Environ. Sci. Technol. 37: 2371-2375 
  21. Joner, E. J., Hirmann, D., Oliver, H. J., Todorovic, D., Leyval, C. and Loibner, A. 2004. Priming effects on PAH degradation and ecotoxicity during a phytoremediation experiment. Environ. Poll. 128: 429-435 
  22. Kipopoulou, A. M., Manoli, E. and Samara, C. 1999. Bio-concentration of PAHs in vegetables grown in an industrial area. Environ. Pollution. 106: 369-380 
  23. Leyval, C. and Binet, P. 1998. Effect of poly aromatic hydrocarbons (PAHs) in soil on aurbuscular mycorrhizal plants. J. Environ. Quality 27: 402-407 
  24. Licht, L. and Isebrands, J. G. 2005. Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass and Bioenergy 28(2): 203-218 
  25. US EPA. 2000. Introduction to phytoremediation. EPA/ 6001R-99/ 107. Washington DC, February 
  26. Ma, Y., Zhang, J. Y. and Wong, M. H. 2003. Microbial activity during composting of anthracene-contaminated soil. Chemosphere 52: 1505-1513 
  27. Martin, J. P 1950. Use of acid, rose bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci. 69: 215-232 
  28. Martin, J. K. 1975. Composition of agar media for counts of viable soil bacteria. Soil Bioi. Biochem. 7: 401-402 
  29. Moran, R. and Porath, D. 1980. Chlorophyll determination in tissue using N, N-dimethylforamide. Plant Physiol. 65: 478-479 
  30. Newman, L. and Reynolds, C. M. 2005. Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends in Biotech. 23: 6-8 
  31. Paterson, S. and Mackay, D. 1994. A model of organic chemical uptake by plants from soil and the atmosphere. Environ. Sci. Technol. 28: 2259-2265 
  32. Petersen, L. S., Larsen, E. H., Larsen, P. B. and Bruun, P 2002. Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environ. Sci. Technol. 36: 3057-3063 
  33. Phillips, J. M. and Hayman, D. S. 1970. Improved procedures for clearing roots& staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Brit. Mycol. Soc. 55: 158-161 
  34. Rabie, G. H. 2004. Using wheat-mungbean plant system and arbuscular mycorrhiza to Enhance in-situ bioremediation. Food Agric. Environ. 2(2): 381-390 
  35. Reilley, K. A., Banks, M. K. and Schwab, A. P 1996. Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J. Environ. Qual. 25: 212-219 
  36. Rock, S., 1997. Phytoremediation. In: Freeman, H. Ed. Standard Handbook of Hazardous Waste Treatment and Disposal, 2nd Edition. McGraw Hill Inc, New York, USA, pp. 93-112 
  37. Salzer, P., Corbiere, H. and Boller, T. 1999. Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forrning fungus Glomus intradices. Planta 208: 319-325 
  38. Simonich, S. L. and Hites, R. A. 1994. Vegetationatmosphere partitioning of polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 28: 939-943 
  39. Sung, K., Corapcioglu, M. Y., Draw, M. C. and Munster, C. L. 2001. Plant contamination by organic pollutants in phytoremediation. J. Environ. Qual. 30: 2081-2090 
  40. Suthersan, S. S. 2002. Natural and Enhanced Remediation Systems. Arcadis Lewis Publishers, London 
  41. Thalmann, A. 1968. Zur methodic der bestimmung del' dehydrogenas eaktivitat in boden mittels triphenyl tetrazolium chlorid (ITC). Landwirtsch, Forsch. 21: 249-258 
  42. Trapp, S., Matthies, M., Scheunert, I. and Topp, E. M. 1990. Modeling the bio-concentration of organic chemicals in plants. Environ. Sci. Technol. 24: 1246-1252 
  43. Trouvelot, A., Kough, J. and Gianinazzi-Pearson, V. 1986. Measure des taux de mycorhization VA d' UN system radiculaire. Recherche de methode destimation ayant une signification fonctionnelle. In: netical aspects of mycorrhizae, Institut National de la Recherche Agronomique. Press, Paris, pp. 217-221 
  44. Wilson, S. C. and Jones, K. S. 1993. Bioremediation of soils contaminated with polynuclear aromatic hydrocarbons (PAHs): A Review. Environ. Pollut. 88: 229-249 
  45. Yoshitomi, K. J. and Shann, J. R. 2001. Com (Zea mays L.) root exudate and their impact on 14C-pyene mineralization. Soil Bioi. Biochem. 33: 1769-1776 
  46. Chiou, C. T, Sheng, G. Y. and Manes, M. 2001. A partition-limited model for the plant uptake of organic contaminants from soil and water. Environ. Sci. Technol. 35: 1437-1444 
  47. Szolar, O. H., Rost, H., Braun, R. and Loibner, A. P. 2002. Analysis of polycyclic aromatic hydrocarbons in soil: minimizing sample pretreatment using automated Soxhlet with ethyl acetate as extraction solvent. Analytical Chemistry 74: 2379-2385 
  48. Mattina, M. J. I., Lannucci-Berger, W., Musante, C. and White, J. C. 2003. Concurrent plant uptake of heavy metals and persistent organic pollutants from soils. Environ. Pollut. 124: 375-378 
  49. Chance, A. B. and Maehly, C. 1955. Assay of catalases and peroxidases. Methods Enzymol. 2: 764-775 
  50. Binet, P., Portal, J. M. and Leyval, C. 2001. Application of GCMS to the study of anthracene disappearance in the rhizosphere of ryegrass. Org. Geochem. 32: 217-222 
  51. Huang, X.-D., EI-Alawi Y., Penrose, D. M., Glick, B. R. and Greenberg, B. M. 2004b. A multi-process Phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated. Environ. Poll. 130: 465-476 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

이 논문과 연관된 기능

DOI 인용 스타일