$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

응집-정밀여과에 의한 도시하수의 처리

The Treatment of Domestic Wastewater by Coagulation-Crossflow Microfiltration

초록

최근, 하 폐수 처리에 있어서 처리수의 보다 나은 수질과 엄격한 기준의 만족을 위해 기존의 공정외에 덧붙여 막분리 공정이 이용되고 있다. 그러나, 수처리 과정에서 막분리 공정의 사용은 막의 막힘 현상과 용존 유기오염물 제거의 어려움 등의 문제점이 있다. 본 연구에서는 막분리 공정에 응집제 alum과 PAC을 이용한 응집공정을 첨가하여 막 투과유속과 처리효율을 증가시켰다. 그리고 응집제 주입효과와 최적운전조건은 투과유속, 누적부피, 막의 총저항, 입자크기, 용존성 유기오염물, 용존성 알루미늄, 처리수의 수질을 분석하여 연구하였다. alum 응집에 비교해 PAC 응집은 큰 입자를 형성하여 여과 매체의 막힘현상을 줄이고 높은 투과유속과 누적 부피량을 보였다. 또한 PAC 응집에서 낮은 용존 유기오염물과 용존성 알루미늄은 투과유속 감소율을 낮추었다. $0.2\;{\mu}m$ 막 사용시 케이크여과의 모습을 보였으며, $0.45\;{\mu}m$ 막 사용시 순환운전으로 인한 플럭 깨짐 현상으로 공극보다 작은 플럭의 투과가 발생하여 투과유속이 계속 감소하고 막의 총저항이 증가하는 모습을 보였다. PAC과 alum 모두 약 $300{\pm}50\;mg/L$가 최적 응집주입량이었으며, PAC 응집과 $0.2\;{\mu}m$ 막 사용시 처리 효율이 가장 높고, $0.45\;{\mu}m$ 막 사용시 투과수량이 가장 많았다. 처리 효율은 탁도 99.8%, SS 99.9%, $BOD_5$ 94.4%, $COD_{Cr}$ 95.4%, T-N 54.3%, T-P 99.8%이었다.

Abstract

Recently, membrane processes have been replacing the conventional processes for waste water treatment to produce better quality of effluent and to meet more stringent regulations because of water shortage. However, using membrane processes for water treatment has confronted with fouling and difficulty in treating dissolved organic pollutants. In this study, membrane process equipped with crossflow microfiltration is combined with coagulation process using alum and PAC to improve permeability and treatment efficiency. The effects of coagulant dosage and optimum membrane operating conditions were investigated from measurement of permeate flow, cumulative volume, total resistance, particle size, dissolved organic pollutant, dissolved aluminium and quality of effluent. Characteristic of PAC coagulation was compared with that of alum coagulation. PAC coagulation reduced membrane fouling because of forming larger particle size and increased permeate velocity and cumulative volume. Less dissolved organic pollutants and dissolved aluminum made decreasing-rate of permeate velocity being lowered. At using $0.2\;{\mu}m$ membrane, cake filtration observed. At using $0.45\;{\mu}m$ membrane, there was floc breakage due to shear stress occurred born circulating operation. It made floc size smaller than membrane pore size, which subsequently to decrease permeate velocity and to increase total resistance. The optimum coagulation dosage was $300{\pm}50\;mg/L$ for both alum and PAC. PAC coagulation was more efficiently used with $0.2\;{\mu}m$ membrane, and the highest permeate flux was in using $0.45\;{\mu}m$membrane. The greatest efficiency of treatment was as follows; turbidity 99.8%, SS 99.9%, $BOD_5$ 94.4%, $COD_{Cr}$ 95.4%, T-N 54.3%, T-P 99.8%.

참고문헌 (14)

  1. Nanofiltration of natural organic matter with $H_2O_2$/ UV pretreatment: fouling mitigation and membrane surface characterization , Song, W.H.;Ravindran, V.;Koel, B.E.;Pirbazari, M. , J. Membr. Sci. / v.24,pp.143-160, 2004
  2. Treatment of waste coolants by coagulation and membrane filtration , Hilal, N.;Busca, G.;Federico, T.A.;Atkin, B.P. , Chemical Engineering and Processing / v.43,pp.811-821, 2004
  3. Water clarification processes practical design and evaluation , Herbert, E.;Hudson, Jr. , / v.,pp.45-49, 1981
  4. Heavy metals removal , Lanoette, K.H. , Chem. Eng. / v.84,pp.73-80, 1997
  5. 정밀여과에 의한 중금속수산화물 부유물질의 처리와 거동 , 유근우 , / v.,pp., 2001
  6. Standard Methods for the Examination of Water and Wasterwater , APHA, AWWA and WEF , / v.,pp., 1998
  7. 환경부 고시 제 96-32호, 수질환경공정시험법 , 환경부 , / v.,pp., 1996
  8. A hydrodynamic comparison between rotating disk and vibratory dynamic filtration systems , Jaffrin, M.Y.;Ding, L.H.;Akoum, O.;Brou, A. , J. Membr. Sci. / v.242,pp.155-167, 2004
  9. The fouling of microfiltration membranes by NOM after coagulation treatment , Carroll, T.;King, S.;Gray, S.R.;Bolto, B.A.;Booker, N.A. , Water Res. / v.34,pp.2861-2868, 2000
  10. Dynamic analysis of coagulation with PAC: a case study , Matsui, Y.;Yuasa, A.;Furuya, Y.;Kamei, T. , J. Am. Water Works Assoc. / v.90,pp.88-95, 1998
  11. Coagulation and membrane separation , Wiesner, M.R.;Laine, J.;Mallevialle, J.(ed.);Odendaal, P.E.(ed.)Wiesner, M.R.(ed.) , Water Treatment Membrane Processes / v.,pp., 1996
  12. Poly aluminum chloride and alum coagulation of clay-fulvic acid suspension , Dempsey, B.A.;Sheu, H.;Ahemd, T.M.T.;Mentink, J. , J. Am. Water Works Assoc. / v.77,pp.74-80, 1985
  13. 막여과 이론과 실제 , 조봉연 , / v.,pp.25, 1999
  14. Basic Principles of Membrane Technology , Mulder, Marcel , / v.,pp., 1991

이 논문을 인용한 문헌 (1)

  1. Ryu, Jae-Na ; Oh, Je-Ill ; Lee, Kyeoung-Jong 2010. "Saturation curves for chemical coagulation of wastewater treatment" 上下水道學會誌 = Journal of Korean Society of Water and Wastewater, 24(5): 537~548 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일