유비쿼터스 컴퓨팅에 대한 관심이 증가함에 따라, 이미지 코드도 다양한 영역에서 관심을 끌고 있다. 유비쿼터스 컴퓨팅에서 이미지 코드가 중요한 이유는 비용면과 함께 많은 영역에서 RFID(radio frequency identification)를 보완하거나 대체할 수 있기 때문이다. 그렇지만, 칼라의 왜곡이 심하여 정확한 칼라를 읽는데 어려움이 있기 때문에, 그 응용은 아직까지는 매우 제한적이다. 이 논문에서는, 칼라의 색상 및 채도 값을 이용하여 자동으로 이미지 코드를 찾아내는 것을 포함하여, 이미지 코드 인식에 관한 효율적인 방법을 제시한다. 이 논문의 실험에서는 현재 상용되고 있는 것들 중 가장 실용적이라고 판단되는 디자인을 사용하였다. 이 이미지 코드에는 여섯 개의 안전 칼라, 즉, R, G, B, C, M, Y가 사용되었다. 실험 영상들로는 크기가 $2464{\times}1632$인 72개의 트루 칼라 필드 영상들을 사용하였다. 히스토그램에 의해 칼라를 보정한 경우, 코드 검출 정확도는 96%, 검출된 코드에 대한 칼라 분류 정확도는 91.28% 이었다. 이미지 코드를 검출 및 인식하는데 2 GHz P4 PC에서 약 5초가 소요되었다.
유비쿼터스 컴퓨팅에 대한 관심이 증가함에 따라, 이미지 코드도 다양한 영역에서 관심을 끌고 있다. 유비쿼터스 컴퓨팅에서 이미지 코드가 중요한 이유는 비용면과 함께 많은 영역에서 RFID(radio frequency identification)를 보완하거나 대체할 수 있기 때문이다. 그렇지만, 칼라의 왜곡이 심하여 정확한 칼라를 읽는데 어려움이 있기 때문에, 그 응용은 아직까지는 매우 제한적이다. 이 논문에서는, 칼라의 색상 및 채도 값을 이용하여 자동으로 이미지 코드를 찾아내는 것을 포함하여, 이미지 코드 인식에 관한 효율적인 방법을 제시한다. 이 논문의 실험에서는 현재 상용되고 있는 것들 중 가장 실용적이라고 판단되는 디자인을 사용하였다. 이 이미지 코드에는 여섯 개의 안전 칼라, 즉, R, G, B, C, M, Y가 사용되었다. 실험 영상들로는 크기가 $2464{\times}1632$인 72개의 트루 칼라 필드 영상들을 사용하였다. 히스토그램에 의해 칼라를 보정한 경우, 코드 검출 정확도는 96%, 검출된 코드에 대한 칼라 분류 정확도는 91.28% 이었다. 이미지 코드를 검출 및 인식하는데 2 GHz P4 PC에서 약 5초가 소요되었다.
With the increase of interest in ubiquitous computing, image code is attracting attention in various areas. Image code is important in ubiquitous computing in that it can complement or replace RFID (radio frequency identification) in quite a few areas as well as it is more economical. However, becau...
With the increase of interest in ubiquitous computing, image code is attracting attention in various areas. Image code is important in ubiquitous computing in that it can complement or replace RFID (radio frequency identification) in quite a few areas as well as it is more economical. However, because of the difficulty in reading precise colors due to the severe distortion of colors, its application is quite restricted by far. In this paper, we present an efficient method of image code recognition including automatically locating the image code using the hue and saturation values. In our experiments, we use an image code whose design seems most practical among currently commercialized ones. This image code uses six safe colors, i.e., R, G, B, C, M, and Y. We tested for 72 true-color field images with the size of $2464{\times}1632$ pixels. With the color calibration based on the histogram, the localization accuracy was about 96%, and the accuracy of color classification for localized codes was about 91.28%. It took approximately 5 seconds to locate and recognize the image code on a PC with 2 GHz P4 CPU.
With the increase of interest in ubiquitous computing, image code is attracting attention in various areas. Image code is important in ubiquitous computing in that it can complement or replace RFID (radio frequency identification) in quite a few areas as well as it is more economical. However, because of the difficulty in reading precise colors due to the severe distortion of colors, its application is quite restricted by far. In this paper, we present an efficient method of image code recognition including automatically locating the image code using the hue and saturation values. In our experiments, we use an image code whose design seems most practical among currently commercialized ones. This image code uses six safe colors, i.e., R, G, B, C, M, and Y. We tested for 72 true-color field images with the size of $2464{\times}1632$ pixels. With the color calibration based on the histogram, the localization accuracy was about 96%, and the accuracy of color classification for localized codes was about 91.28%. It took approximately 5 seconds to locate and recognize the image code on a PC with 2 GHz P4 CPU.
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
문제 정의
In this paper, we presented a classification technique for a commercial image code of a design that would be the most practical considering the severe distortion of colors in field images. The structure of the code and its classification method have benefits in robustness for partially obscured cases and in processing time.
이론/모형
The clustering is based on the maximum distance algorithm [16], which can be used to determine the number of clusters, and k-means clustering algorithm [15] to estimate the center of clusters based on the number of clusters. [Fig.
이 논문을 인용한 문헌
저자의 다른 논문 :
활용도 분석정보
상세보기
다운로드
내보내기
활용도 Top5 논문
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다. 더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.