$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Simple Sequence Repeat (SSR) and GC Distribution in the Arabidopsis thaliana Genome 원문보기

Journal of plant biotechnology, v.7 no.1, 2005년, pp.17 - 25  

Mortimer Jennifer C (Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University, Victorian Bioinformatics Consortium, Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University, Department of Plant Sciences, University of Cambridge) ,  Batley Jacqueline (Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University) ,  Love Christopher G (Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University, Victorian Bioinformatics Consortium, Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University) ,  Logan Erica (Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University, Victorian Bioinformatics Consortium, Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University) ,  Edwards David (Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University, Victorian Bioinformatics Consortium, Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University)

Abstract AI-Helper 아이콘AI-Helper

We have mined each of the five A. thaliana chromosomes for the presence of simple sequence repeats (SSRs) and developed custom perl scripts to examine their distribution and abundance in relation to genomic position, local G/C content and location within and around transcribed sequences. The distrib...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The program SPUTNIK (Abajian 1994, http://abajian.net/ sputnik/) was applied, in combination with custom perl scripts, to identify SSRs within a series of overlapping windows of 100 Kb with a 1 Kb step, across the five Ara­ bidopsis chromosomes and within each of the additional datasets. The criteria for SSR discovery was a minimum repeat length of 5 repeat units for dinucleotide repeats, 4 repeat units for trinucleotide repeats, 3 repeat units for tetranucleotide repeats and 2 repeat units for pentanu­ cleotide repeats.
  • org). These data included five complete chromosome seqences, and multi fasta files representing exons, introns, coding sequence, intergenic regions, 3' UTRs (UnTranslated Regions), 5' UTRs and 1000 bp and 3000 bp regions flanking expressed genes. The original gene flan­ king sequence datasets represented mixtures of UTR and non-UTR containing sequences.

대상 데이터

  • Arabidopsis thaliana sequence datasets were obtained from TAIR (The Arabidopsis Genome Initiative 2000; http://www.arabidopsis.org). These data included five complete chromosome seqences, and multi fasta files representing exons, introns, coding sequence, intergenic regions, 3' UTRs (UnTranslated Regions), 5' UTRs and 1000 bp and 3000 bp regions flanking expressed genes.
본문요약 정보가 도움이 되었나요?

참고문헌 (35)

  1. Abajian C (1994) SPUTNIK 

  2. Arhondakis S, Auletta F, Torelli G, D'Onofrio G (2004) Base composition and expression level of human genes. Gene 325: 165-169 

  3. Awadalla P, Ritland K (1997) Microsatellite variation and evolution in the Mimulus guttatus species complex with contracting mating systems. Mol Biol Evol 14: 1023-1034 

  4. Barakat A, Han DT, Benslimane AA, Rode A, Bernadi G (1999) The gene distribution in the genomes of pea, tomato and date palm. FEBS Lett 463: 139-142 

  5. Borstnik B, Pumpernik D (2002) Tandem repeats in protein coding regions of primate genes. Genome Res 12: 909-915 

  6. Brandes A, Thompson H, Dean C, Heslop-Harrison JS (1997) Multiple repetitive DNA sequences in the paracentromeric regions of Arabidopsis thaliana L. Chromosome Res 5: 238-246 

  7. Dieringer D, Schlotterer C (2003) Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Res 1: 2242-2251 

  8. Gupta M, Chyi Y-S, Romero-Severson J, Owen JL (1994) Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor Appl Genet 89: 998-1006 

  9. Holland JB, Hellend SJ, Sharopova N, Rhyne DC (2001) Polymorphism of PCR based markers targeting exons, introns, promoter regions, and SSRs in maize and introns and repeat sequences in oat. Genome 44: 1065-1076 

  10. Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48: 501-510 

  11. Kashi Y, King D, Soller M (1997) Simple sequence repeats as a source of quantitative genetic variation. Trends Genet 13: 74-78 

  12. Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18: 1161-1167 

  13. Khashnobish A, Hamann A, Osiewacz HD (1999) Modulation of gene expression by (CA)(n) microsatellites in the filamentous ascomycete Podospora anserina. Applied Microbiol Biotech 52: 191-195 

  14. Li Y-C, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11: 2453-2465 

  15. Lowenhaupt KY, Rich A, Pardue ML (1989) Nonrandom distribution of long mono-nucleotide and dinucleotide repeats in Drosophila chromosomes - correlations with dosage compensation, heterochromatin and recombination. Mol Cell Biol 9: 1173-1182 

  16. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with non repetitive DNA in plant genomes. Nat Genet 30: 194-200 

  17. Moxon ER, Wills C (1999) DNA Microsatellites: Agents of Evolution. Sci Am 280: 94-99 

  18. Nanda I, Zischler H, Epplen C, Gutlenbach M, Schmid M (1991) Chromosomal organisation of simple repeated DNA Sequences used for DNA fingerprinting. Electrophoresis 12: 193-203 

  19. Pardue ML, Lowenhaupt K, Rich A, Nordheim A (1987) (DCDA)N.(DG-DT)N sequences have evolutionarily conserved chromosomal locations in Drosophila with implications for roles in chromosome structure and function. EMBO J 6: 1781-1789 

  20. Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1: 215-222 

  21. Ramsay L, Macaulay M, Cardle L, Morgante M, degli Ivanissevich S, Maestri E, Powell W, Waugh R (1999) Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J 17: 415-425 

  22. Robinson AJ, Love CG, Batley J, Barker G, Edwards 0 (2004) Simple sequence repeat marker loci discovery using SSRPrimer. Bioinformatics (In Press) 

  23. Ross CL, Dyer KA, Erez T, Miller SJ, Jaenike J, Markow TA (2003) Rapid divergence of microsatellite abundance among species of Drosophila. Mol Biol Evol 20: 1143-1157 

  24. Schmidt T, Heslop-Harrison JS (1996) The physical and genomic organisation of microsatellites in sugar beet. Proc Natl Acad Sci USA 93: 8761-8765 

  25. Schlotterer C (2000) Evolutionary dynamics of microsatellite DNA. Nucleic Acids Res 20: 211-215 

  26. Schlctlerer C, Pemberton J (1994) The use of microsatellites for genetic analysis of natural populations. In: Scheirwater B, Streit B, Wagner GP, DeSalie R, (eds), Molecular Ecology and Evolution: Approaches and Applications. Birkhauser Verlag Basel, Switzerland, pp 71-86 

  27. Sreenu VB, Alevoor V, Nagaraju J, Nagarajaram HA (2003) MICdb: database of prokaryotic microsatellites. Nucleic Acids Res 31: 106-108 

  28. Subramanian S, Mishra RK, Singh L (2003) Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Genome Biol 4: R13 

  29. Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17: 6463-6471 

  30. Tautz D, Renz M (1984) Simple sequences as ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12: 4127-4138 

  31. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815 

  32. Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes:survey and analysis. Genome Res 10: 967-981 

  33. Varshney RK, Thiel T, Stein N, Langridge P, Graner A (2002) In silica analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett 7: 537-546 

  34. Weber JL (1990) Informativeness of human $(DC-DA)_n. (DG-DT)_n$ polymorph isms. Genomics 7: 524-530 

  35. Xu X, Peng M, Fang Z, Xu X (2000) The direction of microsatellite mutations is dependent upon allele length. Nat Genet 24: 396-399 

저자의 다른 논문 :

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로