$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

Trichloroethylene (TCE) is an environmental contaminant provoking genetic mutation and damages to liver and central nerve system even at low concentrations. A practical scheme is reported using toluene as a primary substrate to revitalize the biofilter column for an extended period of TCE degradation. The rate of trichloroethylene (TCE) degradation by Pseudomonas putida F1 at $25^{\circ}C$ decreased exponentially with time, without toluene feeding to a biofilter column ($11\;cm\;I.D.{\times}95\;cm$ height). The rate of decrease was 2.5 times faster at a TCE concentration of $970\;{\mu}g/L$ compared to a TCE concentration of $110\;{\mu}g/L$. The TCE itself was not toxic to the cells, but the metabolic intermediates of the TCE degradation were apparently responsible for the decrease in the TCE degradation rate. A short-term (2 h) supply of toluene ($2,200\;{\mu}g/L$) at an empty bed residence time (EBRT) of 6.4 min recovered the relative column activity by $43\%$ when the TCE removal efficiency at the time of toluene feeding was $58\%$. The recovery of the TCE removal efficiency increased at higher incoming toluene concentrations and longer toluene supply durations according to the Monod type of kinetic expressions. A longer duration ($1.4{\sim}2.4$ times) of toluene supply increased the recovery of the TCE removal efficiency by $20\%$ for the same toluene load.

참고문헌 (22)

  1. Oldenhuis, R., J. Y. Odedzes, J. J. Waarde, and D. B. Janssen (1991) Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichlorosporium OB3b and toxicity of trichloroethylene. Appl. Environ. Microbiol. 57: 7-14 
  2. Nakamura, Y., M. Daidai, and F. Kobayashi (2004) Bioremediation of phenolic compounds having endocrinedisrupting activity using ozone oxidation and activated sludge treatment. Biotechnol. Bioprocess Eng. 9: 151-155 
  3. Kleopfer, R. D., D. M. Easley, B. B. Hass, Jr. T. G. Deihl, D. E. Jackson, and F. P. Guengerich (1985) Anaerobic degradation of trichloroethylene in soil. Environ. Sci. Technol. 19: 277-280 
  4. Arciero, D., T. Vannelli, M. Logan, and A. B. Hooper (1989) Degradation of trichloroethylene by the ammoniaoxidizing bacterium Nitrosomonas europaea. Biochem. Bioph. Res. Co. 159: 640-643 
  5. Chang, H. L. and L. Alvarez-Cohen (1997) Two stage methanotrophic bioreactor for the treatment of chlorinated organic wastewater. Water Res. 31: 2026-2036 
  6. Sukesan, S. and M. E. Watwood (1997) Continuous vapor- phase trichloroethylene biofiltration using hydrocarbon- enriched compost as filtration matrix. Appl. Microbiol. Biotechnol. 48: 671-676 
  7. Wackett, L. P. and D. Gibson (1988) Degradation of trichloroethylene by toluene dioxygenase in whole cell studies with Pseudomonas putida F1. Appl. Environ. Microbiol. 54; 1703-1708 
  8. Wackett, L. P. and S. R. Householder (1989) Toxicity of trichloroethylene to Pseudomonas putida F1 is mediated by toluene dioxygenase. Appl. Environ. Microbiol. 55: 2723-2725 
  9. Li, S. and L. P. Wackett (1992). Trichloroethylene oxidation by toluene dioxygenase. Biochem. Bioph. Res. Co. 185: 443-451 
  10. Stainer, R. Y., N. J. Palleroni, and M. Doudoroff (1966) The aerobic Pseoudomonas: a taxonomic study. J. Gen. Appl. Microbiol. 43: 159-171 
  11. Vogel, T. M. and P. McCarty (1986) Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl. Environ. Microbiol. 49: 1080-1083 
  12. Dolasa, A. R. and S. J. Ergas (1999) Membrane bioreactor for cometabolism of trichloroethene air emissions. J. Environ. Eng.-ASCE. 126: 969-973 
  13. Ely, R. L., K. J. Williamson, R. B. Guenther, M. R. Hyman, and D. J. Arp (1995) A cometabolic kinetics model incorporation enzyme inhibition, inactivation, and recovery: I. Model development, analysis, and testing. Biotechnol. Bioeng. 46: 218-231 
  14. Zhang, X. H. and R. K. Bajpai (2000) A comprehensive model for the cometabolism of chlorinated solvents. J. Environ. Sci. Health. A35: 229-244 
  15. Lackey, L. W., J. R. Gamble, and J. L. Boles (2002) Bench-scale evaluation of a biofiltration system used to mitigate trichloroethylene contaminated air streams. Adv. in Environ. Res. 7: 97-104 
  16. Hyman, M. R., S. A. Russell, R. L. Ely, K. J. Williamson, and D. J. Arp (1995) Inhibition, inactivation, and recovery of ammonia-oxidizing activity in cometabolism of trichloroethylene by Nitrosomonas europaea. Appl. Environ. Microbiol. 61: 1480-1487 
  17. Cox, C. D., H. J. Woo, and K. G. Robinson (1998) Cometabolic biodegradation of trichloroethylene (TCE) in the gas phase. Water Sci. Technol. 37: 97-104 
  18. Ely, R. L., M. R. Hyman, D. J. Arp, R. B. Guenther, and K. J. Williamson (1995) A cometabolic kinetics model incorporation enzyme inhibition, inactivation, and recovery: II. Trichloroethylene degradation experiments. Biotechnol. Bioeng. 46: 232-245 
  19. Kim, J.-H., W.-H. Jeong, T. B. Karegoudar, and C.-K. Kim (2002) Stable degradation of benzoate by Klebsiella oxytoca C302 immobilized in alginate and polyurethane. Biotechnol. Bioprocess Eng. 7: 347-351 
  20. Lenore, S. C., E. G. Arnold, and D. E. Andrew (1998) Standard Methods for the Examination of Water and Wastewater. 18th ed., American Public Health Association Press, Washington DC, USA 
  21. Pressman, J. G., G. Georgiou, and G. E. Speital (1999) Demonstration of efficient trichloroethylene biodegradation in a hollow fiber membrane bioreactor. Biotechnol. Bioeng. 62: 681-692 
  22. Speital, G. E. Jr. and D. S. McLay (1993) Biofilm reactors for treatment of gas stream containing chlorinated solvents. J. Environ. Eng.-ASCE. 119: 658-678 

이 논문을 인용한 문헌 (4)

  1. Jeong, Gwi-Taek ; Lee, Gwang-Yeon ; Cha, Jin-Myoung ; Park, Don-Hee 2007. "Removal of Hydrogen Sulfide using Reticulated Polyurethan Carrier in Biofilter" 화학공학 = Korean chemical engineering research, 45(4): 372~377 
  2. 2009. "" Biotechnology and bioprocess engineering, 14(2): 248~255 
  3. 2010. "" Biotechnology and bioprocess engineering, 15(3): 505~511 
  4. 2011. "" Biotechnology and bioprocess engineering : Bbe, 16(5): 1009~1018 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

이 논문과 연관된 기능

DOI 인용 스타일