$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

포섭구조 일대다 지지벡터기계와 Naive Bayes 분류기를 이용한 효과적인 지문분류

Effective Fingerprint Classification using Subsumed One-Vs-All Support Vector Machines and Naive Bayes Classifiers

초록

지문분류는 사전에 정의된 클래스로 입력된 지문을 분류하여 자동지문인식 시스템에서 비교해야할 지문의 수를 줄여준다. 지지벡터기계(support vector machine; SVM)는 패턴인식 분야에서 널리 사용되고 있을 뿐만 아니라 지문분류에서도 높은 성능을 보이고 있다. SVM은 이진클래스 분류기이기 때문에 다중클래스 문제인 지문분류를 위해서 적절한 분류기 생성과 결합 기법이 필요하며, 본 논문에서는 일대다(one-vs-all; OVA) 방식으로 구성된 SVM을 naive Bayes(NB) 분류기를 이용하여 동적으로 구성하는 분류방법을 제안한다. 지문분류에서 대표적으로 사용되는 특징인 FingerCode와 지문의 구조적 특징인 특이점과 의사융선을 사용하여 OVA SVM과 NB 분류기를 학습하고, 포섭구조의 분류기를 구성하여 효과적인 지문분류를 수행한다. NIST-4 데이타베이스에 제안하는 방법을 적용하여 5클래스 분류에 대해서 90.8%의 높은 분류율을 획득하였으며, OVA 전략의 SVM을 다중클래스 분류문제에 적용할 때 발생하는 동점문제를 효과적으로 처리하였다.

Abstract

Fingerprint classification reduces the number of matches required in automated fingerprint identification systems by categorizing fingerprints into a predefined class. Support vector machines (SVMs), widely used in pattern classification, have produced a high accuracy rate when performing fingerprint classification. In order to effectively apply SVMs to multi-class fingerprint classification systems, we propose a novel method in which SVMs are generated with the one-vs-all (OVA) scheme and dynamically ordered with $na{\ddot{i}}ve$ Bayes classifiers. More specifically, it uses representative fingerprint features such as the FingerCode, singularities and pseudo ridges to train the OVA SVMs and $na{\ddot{i}}ve$ Bayes classifiers. The proposed method has been validated on the NIST-4 database and produced a classification accuracy of 90.8% for 5-class classification. Especially, it has effectively managed tie problems usually occurred in applying OVA SVMs to multi-class classification.

참고문헌 (30)

  1. N. Yager and A. Amin, 'Fingerprint classification: A review,' Pattern Analysis and Applications, vol. 7, no. 1, pp. 77-93, 2004 
  2. H. Nyongesa, S. Al-khayatt, S. Mohamed and M. Mahmoud, 'Fast robust fingerprint feature extraction and classification,' J. Intelligent and Robotic Systems, vol. 40, no. 1, pp. 103-112, 2004 
  3. R. Cappelli, A. Lumini, D. Maio and D. Maltoni, 'Fingerprint classification by directional image partitioning,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 21, no. 5, pp. 402-421, 1999 
  4. A. Senior, 'A combination fingerprint classifier,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 10, pp. 1165-1174. 2001 
  5. K. Karu and A. Jain, 'Fingerprint classification,' Pattern Recognition, vol. 29, no. 3, pp. 389-404, 1996 
  6. Q. Zhang and H. Yan, 'Fingerprint classification based on extraction and analysis of singularities and pseudo ridges,' Pattern Recognition, vol. 37, no. 11, pp. 2233-2243, 2004 
  7. K. Nagaty, 'Fingerprints classification using artificial neural networks: A combined structural and statistical approach,' Neural Networks, vol. 14, no. 9, pp. 1293-1305, 200l 
  8. A. Jain, S Prabhakar and L. Hong, 'A multichannel approach to fingerprint classification,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 21, no. 4, pp. 348-359, 1999 
  9. C. Park and H. Park, 'Fingerprint classification using fast Fourier transform and nonlinear discriminant analysis,' Pattern Recognition, vol. 38, no. 4, pp. 495-503, 2005 
  10. M. Chong, T. Ngee, L. Jun and R. Gay, 'Geometric framework for fingerprint image classification,' Pattern Recognition, vol. 30, no. 9, pp. 1475-1488, 1997 
  11. J. Chang and K. Fan, 'A new model for fingerprint classification by ridge distribution sequences,' Pattern Recognition, vol. 35, no. 6, pp. 1209-1223, 2002 
  12. Y. Yao, G. Marcialis, M. Pontil, P. Frasconi and F.Roli, 'Combining flat and structured representations for fingerprint classification with recursive neural networks and support vector machines,' Pattern Recognition, vol. 36, no. 2, pp. 397-406, 2003 
  13. C. Watson and C. Wilson, Fingerprint Database, National Institute of Standard and Technology, Special Database 4, FPDB, April 1992 
  14. E. Bredensteiner and K. Bennett, 'Multicategory classification by support vector machines,' Computational Optimization and Applications, vol. 12, no. 1-3, pp. 53-79, 1999 
  15. D. Sebald and J. Bucklew, 'Support vector machines and the multiple hypothesis test problem,' IEEE Trans. Signal Processing, vol. 49, no. 11, pp. 2865-2872, 2001 
  16. C. Hsu and C. Lin, 'A comparison of methods for multiclass support vector machines,' IEEE Trans. Neural Networks, vol. 13, no. 2, pp. 415-425, 2002 
  17. L. Xu, A. Krzyzak and C. Suen, 'Methods of combining multiple classifiers and their applications to handwriting recognition,' IEEE Trans. Systems, Man, and Cybernetics, vol. 22, no. 3, pp. 418-435, 1992 
  18. D. Ruta and B. Gabrys, 'Classifier selection for majority voting,' Information Fusion, vol. 6, no. 1, pp. 63-81, 2005 
  19. P. Boland, 'Majority systems and the condorcet jury theorem,' Statistician, vol. 38, pp. 181-189, 1989 
  20. J. Kittler, M. Hatef, R. Duin and J. Matas, 'On combining classifiers,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 3, pp. 226-239, 1998 
  21. L. Kuncheva, 'A theoretical study on six classifier fusion strategies,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 2, pp. 281-286, 2002 
  22. K. Crammer and Y. Singer, 'On the learnability and design of output codes for multiclass problems,' Machine Learning, vol. 47, no. 2-3, pp. 201-233, 2002 
  23. T. Gestel, J. Suykens, G. Lanckriet, A. Lambrechts, B. Moor and J. Vandewalle, 'Multiclass LSSVMs: Moderated outputs and coding-decoding schemes,' Neural Processing Letters, vol. 15, no. 1, pp. 45-58, 2002 
  24. S. Raudys and F. Roli, 'The behavior knowledge space fusion method: Analysis of generalization error and strategies for performance improvement,' Lecture Notes in Computer Science, vol. 2709, pp. 55-64, 2003 
  25. L. Kuncheva, et al., 'Decision templates for multiple classifier fusion: An experimental comparison,' Pattern Recognition, vol. 34, no. 2, pp. 299-314, 2001 
  26. L. Kuncheva, 'Using measures of similarity and inclusion for multiple classifier fusion by decision templates,' Fuzzy Sets and Systems, vol. 122, no. 3, pp. 401-407, 2001 
  27. R. Brooks, 'A robust layered control system for a mobile robot,' IEEE J. of Robotics and Automation, vol. 2, no. 1, pp. 14-23, 1986 
  28. J. Liu, B. Li and T. Dillon, 'An improved naive Bayesian classifier technique coupled with a novel input solution method,' IEEE Trans. Systems, Man, and Cybernetics-Part C: Applications and Reviews, vol. 31, no. 2, pp. 249-256, 2001 
  29. M. Ramoni and P. Sebastiani, 'Robust Bayes classifiers,' Artificial Intelligence, vol. 125, no. 1- 2, pp. 209-226, 2001 
  30. S. Keerthi and C.-J. Lin, 'Asymptotic behaviors of support vector machines with Gaussian kernel,' Neural Computation, vol. 15, no. 7, pp. 1667-1689, 2003 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일