$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Emulsion rheology and properties of polymerized high internal phase emulsions 원문보기

Korea-Australia rheology journal, v.18 no.4, 2006년, pp.183 - 189  

Lee, Seong-Jae (Department of Polymer Engineering, The University of Suwon)

Abstract AI-Helper 아이콘AI-Helper

High internal phase emulsions are highly concentrated emulsion systems consisting of a large volume of dispersed phase above 0.74. The rheological properties of high internal phase water-in-oil emulsions were measured conducting steady shear, oscillatory shear and creep/recovery experiments. It was ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Presumably, an introduction of thickener to the continuous phase is likely to achieve this goal. In this study, the open microcellular fbams combining some thick­ eners into the conventional formulation of styrene and water system were prepared via highly concentrated water- in-oil emulsion followed by polymerization. Scanning electron microscopy (SEM) was used to observe the cell size as well as the microcellular morphology.
  • The average cell size of each sample could be obtained from the image anal­ ysis technique that statistically evaluates a number of cell sizes of SEM micrographs. Rheological properties of oil phase solutions, aqueous phase solutions and emulsions thereof were measured at 25°C in a controlled stress rhe­ ometer (MCR 300; Physica) to investigate the solution vis­ cosity of each phase, the yield stress and the storage modulus depending on thickener concentration and agi­ tation speed. The compression tests were performed with a universal testing machine (UTM; Lloyd LR 50 K) to eval­ uate the compression properties of the foams.
  • Since the cell size of polymerized foam is rel­ atively simple to be measured, it is rather easier to get a relationship between the rheological properties and the drop size of emulsion, provided that the cell size of result­ ant foam can directly be used as the drop size of HIPEs. Steady shear, creep recovery and oscillatory shear tests were carried out on a series of HIPEs.
  • Rheological properties of oil phase solutions, aqueous phase solutions and emulsions thereof were measured at 25°C in a controlled stress rhe­ ometer (MCR 300; Physica) to investigate the solution vis­ cosity of each phase, the yield stress and the storage modulus depending on thickener concentration and agi­ tation speed. The compression tests were performed with a universal testing machine (UTM; Lloyd LR 50 K) to eval­ uate the compression properties of the foams. The platen speed was fixed as 0.

대상 데이터

  • It is suspected that the outstanding properties of ODVC fbams come from a nano-structured microcellular composite. The organoclay, ODVC (octadecylvinylbenzyl clay), was prepared from an ion exchange reaction between Na+ MMT and dimethyloctadecylvinylbenzyl ammonium bromide. Thus, ODVC participates in the polymerization of styrene.
본문요약 정보가 도움이 되었나요?

참고문헌 (20)

  1. Babak, V.G., A. Langenfeld, N. Fa and M.J. Stebe, 2001, Rheological properties of highly concentrated fluorinated water-in-oil emulsions, Prog. Colloid Polym. Sci. 118, 216-220 

  2. Barby, D. and Z. Haq, 1982, Low density porous cross-linked polymeric materials and their preparation and use as carriers for included liquids, European Patent 0,060,138 

  3. Bhumgara, Z., 1995, Polyhipe foam materials as filtration media, Filtration and Separation 32, 245-251 

  4. Bourne, J.R., 1994, Drop breakup in the viscous subrange: a possible confusion, Chem. Eng. Sci. 49, 1077-1078 

  5. Choi, J.S., B.C. Chun and S.J. Lee, 2003, Effect of rubber on microcellular structures from high internal phase emulsion polymerization, Macromol. Res. 11, 104-109 

  6. Duke, J.R., M.A. Hoisington, D.A. Langlois and B.C. Benicewicz, 1998, High temperature properties of poly(sytrene-coalkylmaleimide) foams prepared by high internal phase emulsion polymerization, Polymer 39, 4369-4378 

  7. Grace, H.P., 1982, Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems, Chem. Eng. Commun. 14, 225-277 

  8. Jager-Lezer, N., J.-F. Tranchant, V. Alard, C. Vu, P.C. Tchoreloff and J.-L. Grossiord, 1998, Rheological analysis of highly concentrated w/o emulsions, Rheol. Acta 37, 129-138 

  9. Kim, K.Y., H.J. Lim, S.M. Park and S.J. Lee, 2003, Synthesis and characterization of high impact polystyrene/organically modified layered silicate nanocomposites, Polymer(Korea), 27, 377-384 

  10. Lee, S.J., 2004, Flow behavior of high internal phase emulsions and preparation to microcellular foam, Korea-Australia Rheol. J. 16, 153-160 

  11. Nielsen, L.E. and R.F. Landel, 1994, Mechanical Properties of Polymers and Composites, Marcel Dekker, New York, 411- 422 

  12. Malkin, A.Y., I. Masalova, P. Slatter and K. Wilson, 2004, Effect of droplet size on the rheological properties of highly-concentrated w/o emulsions, Rheol. Acta 43, 584-591 

  13. Pal, R., 1999, Yield stress and viscoelastic properties of high internal phase ratio emulsions, Colloid Polym. Sci. 277, 583- 588 

  14. Pal, R., 2002, Novel shear modulus equation for concentrated emulsions of two immiscible elastic liquids with interfacial tension, J. Non-Newtonian Fluid Mech. 105, 21-33 

  15. Princen, H.M. and A.D. Kiss, 1989, Rheology of foams and highly concentrated emulsions: IV. An experimental study of the shear viscosity and yield stress of concentrated emulsions, J. Colloid Interface Sci. 128, 176-187 

  16. Sakai, Y. and C.A. Prestidge, 2005, Droplet deformability and emulsion rheology: steady and dynamic behavior, Korea-Australia Rheol. J. 17, 191-198 

  17. Stokes, R.J. and D.F. Evans, 1997, Fundamentals of Interfacial Engineering, Wiley-VCH, New York, 263-268 

  18. Tai, H., A. Sergienko and M.S. Silverstein, 2001, Organic-inorganic networks in foams from high internal phase emulsion polymerizations, Polymer 42, 4473-4482 

  19. Wakeman, R.J., Z.G. Bhumgara and G. Akay, 1998, Ion exchange modules formed from polyhipe foam precursors, Chem. Eng. J. 70, 133-141 

  20. Williams, J.M. and D.A. Wrobleski, 1988, Spatial distribution of the phases in water-in-oil emulsions. Open and closed microcellular foams from cross-linked polystyrene, Langmuir 4, 656-662 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로