$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 방사성핵종을 이용한 치료에서 흡수선량의 평가
Internal Radiation Dosimetry in Radionuclide Therapy 원문보기

핵의학 분자영상 = Nuclear medicine and molecular imaging, v.40 no.2, 2006년, pp.120 - 126  

김경민 (원자력의학원 방사선의학연구센터 핵의학연구실) ,  임상무 (원자력의학원 방사선의학연구센터 핵의학연구실)

Abstract AI-Helper 아이콘AI-Helper

Radionuclide therapy has been continued for treatment of incurable diseases for past decades. Relevant evaluation of absorbed dose in radionuclide therapy is important to predict treatment output and essential for making treatment planning to prevent unexpected radiation toxicity. Many scientists in...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 이 논문에서는 핵의학분야에서 이용되는 내부 흡수선량 평가방법에 대해 간략히 설명하고, 최근 활발히 연구되고 있는 방사면역치료(Radioimmunotherapy)를 중심으로 한 방사성 의약품을 이용한 치료에서 흡수선량 평가를 위해 진행되고 있는 연구방법들을 소개한다.

가설 설정

  • TBD를 전달하는데 필요한 양이다. Wahl 등30)은 위의 방법을 제안하면서 전신 S-value를 얻기 위해 몬테카를로 시뮬레이션에서 타원체로 구성된 인체모형을 가정하였다. 최근에는 환자 개인의 CT나 MRI등의 3차원 해부학적 영상과 SPECT나 PET과 같은 3차원적 방사능의 분포영상을 몬테카를로 시뮬레이션에 이용하여 화소(voxel) 단위의 S-value를 구하고 3차원적인 흡수선량의 분포지도 등을 얻어 환자 개인의 전신 및 장기별 흡수선량을 이전보다 더욱 정확하게 계산할 수 있다.
본문요약 정보가 도움이 되었나요?

참고문헌 (56)

  1. Loevinger R, Budinger TF, Watson EE. MIRD primer for absorbed dose calculation. New York: The Society of Nuclear Medicine; 1988 

  2. Macey DJ, williams LE, Breitz HB. Liu A, Johnson TK, Zanzonico PB. AAPM report No. 17: a primer for radioimmunotherapy and radionuclide therapy. American Association of Physicists in Medicine; 2001 

  3. Macey DJ, williams LE, Breitz HB. Liu A, Johnson TK, Zanzonico PB. AAPM report No. 17: a primer for radioimmunotherapy and radionuclide therapy. American Association of Physicists in Medicine; 2001 

  4. 김은실, 김종순, 김은희. 방사선 안전관리. 고창순 편저. 핵의학. 제2판. 서울: 고려의학; 1997. p. 235-251 

  5. 임상무, 홍성운. 방사성의약품 치료. 고창순 편저. 핵의학. 제2판. 서울: 고려의학; 1997. p.767-798 

  6. Zanzonico PB, Brill AB, Becker DV. Radiation Dosimetry. In: Wagner Jr HN, Szabo Z, Buchanan JW editors. Priciples of Nuclear Medicine. 2nd ed. Philadelphia: W.B.Saunders Company; 1995. p. 106-134 

  7. Internal radiation dosimetry. In: Cherry SR, Sorenson JA, Phelps ME. editors. Physics in Nuclear Medicine. 3rd ed. Philadelphia: Saunders; 2003. p.405-425 

  8. Sgouros G. Dosimetry of internal emitters. J Nucl Med 2005;46:18S-27S 

  9. Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, et al. MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 1999;40:37S-61S 

  10. Bolch WE, Bouchet LG, Robertson JS, Wessels BW, Siegel JA, Howell RW, et al. MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions--radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee. J Nucl Med 1999;40:11S-36S 

  11. Stabin MG. MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 1996;37:538-46 

  12. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second- generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 2005;46:1023-7 

  13. Turner JH, Martindale AA, Boucek J, Claringbold PG, Leahy MF. $^{131}$ I-Anti CD20 radioimmunotherapy of relapsed or refractory non-Hodgkins lymphoma: a phase II clinical trial of a nonmyeloablative dose regimen of chimeric rituximab radiolabeled in a hospital. Cancer Biother Radiopharm 2003;18:513-24 

  14. Wiseman GA, Kornmehl E, Leigh B, Erwin WD, Podoloff DA, Spies S, et al. Radiation dosimetry results and safety correlations from $^{90}$ Y-ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory non-Hodgkin's lymphoma: combined data from 4 clinical trials. J Nucl Med 2003;44: 465-74 

  15. Dewaraja YK, Ljungberg M, Koral KF. Accuracy of $^{131}$ I tumor quantification in radioimmunotherapy using SPECT imaging with an ultra-high-energy collimator: Monte Carlo study. J Nucl Med 2000;41:1760-7 

  16. Delpon G, Ferrer L, Lenta C, Lisbona A, Buvat I, Bardies M. Comparison of four scatter correction methods for patient whole-body imaging during therapeutic trials with iodine-131. Cancer 2002 Feb 15;94:1224-30 

  17. Zaidi H, Koral KF. Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging 2004;31:761-82 

  18. Leichner PK, Koral KF, Jaszczak RJ, Green AJ, Chen GT, Roeske JC. An overview of imaging techniques and physical aspects of treatment planning in radioimmunotherapy. Med Phys 1993;20:569-77 

  19. Dewaraja YK, Ljungberg M, Koral KF. Monte Carlo evaluation of object shape effects in iodine-131 SPET tumor activity quantification. Eur J Nucl Med 2001;28:900-6 

  20. Dewaraja YK, Ljungberg M, Koral KF. Characterization of scatter and penetration using Monte Carlo simulation in $^{131}$ I imaging. J Nucl Med 2000;41:123-30 

  21. Macey DJ, Grant EJ, Bayouth JE, Giap HB, Danna SJ, Sirisriro R, Podoloff DA. Improved conjugate view quantitation of I-131 by subtraction of scatter and septal penetration events with a triple energy window method. Med Phys 1995;22:1637-43 

  22. Koral KF, Zasadny KR, Ackermann RJ, Ficaro EP. Deadtime correction for two multihead Anger cameras in $^{131}$ I dual-energy- window-acquisition mode. Med Phys 1998;25: 85-91 

  23. Rajendran JG, Fisher DR, Gopal AK, Durack LD, Press OW, Eary JF. High-dose $^{131}$ I-tositumomab (anti-CD20) radioimmunotherapy for non-Hodgkin's lymphoma: adjusting radiation absorbed dose to actual organ volumes. J Nucl Med 2004;45:1059-64 

  24. Behr TM, Griesinger F, Riggert J, Gratz S, Behe M, Kaufmann CC, et al. High-dose myeloablative radioimmunotherapy of mantle cell non-Hodgkin lymphoma with the iodine-131-labeled chimeric anti-CD20 antibody C2B8 and autologous stem cell support. Results of a pilot study. Cancer 2002;94:1363-72 

  25. Menzel C, Grunwald F, Schomburg A, Palmedo H, Bender H, Spath G, et al. 'High-dose' radioiodine therapy in advanced differentiated thyroid carcinoma. J Nucl Med 1996;37:1496-503 

  26. Mayer A, Tsiompanou E, Flynn AA, Pedley RB, Dearling J, Boden R, et al. Higher dose and dose-rate in smaller tumors result in improved tumor control. Cancer Invest 2003;21:382-8 

  27. DeNardo SJ, Williams LE, Leigh BR, Wahl RL. Choosing an optimal radioimmunotherapy dose for clinical response. Cancer 2002;94:1275-86 

  28. Erwin WD, Groch MW, Macey DJ, DeNardo GL, DeNardo SJ, Shen S. A radioimmunoimaging and MIRD dosimetry treatment planning program for radioimmunotherapy. Nucl Med Biol 1996;23:525-32 

  29. Zanzonico P, Sgouros G. Predicting myelotoxicity in radioimmunotherapy: what does dosimetry contribute- J Nucl Med 1997;38:1753-4 

  30. Wahl RL, Kroll S, Zasadny KR. Patient-specific whole-body dosimetry: principles and a simplified method for clinical implementation. J Nucl Med 1998;39:14S-20S 

  31. Furhang EE, Chui CS, Kolbert KS, Larson SM, Sgouros G. Implementation of a Monte Carlo dosimetry method for patient-specific internal emitter therapy. Med Phys 1997;24: 1163-72 

  32. Yoriyaz H, Stabin MG, dos Santos A. Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry. J Nucl Med 2001;42:662-9 

  33. Furhang EE, Chui CS, Sgouros G. A Monte Carlo approach to patient-specific dosimetry. Med Phys 1996;23:1523-9 

  34. Kolbert KS, Sgouros G, Scott AM, Bronstein JE, Malane RA, Zhang J, et al. Implementation and evaluation of patient-specific three-dimensional internal dosimetry. J Nucl Med 1997;38:301-8 

  35. Sgouros G. Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J Nucl Med 1993;34:689-94 

  36. Shen S, DeNardo GL, Sgouros G, O'Donnell RT, DeNardo SJ. Practical determination of patient-specific marrow dose using radioactivity concentration in blood and body. J Nucl Med 1999;40:2102-6 

  37. Wessels BW, Bolch WE, Bouchet LG, Breitz HB, Denardo GL, Meredith RF, et al. Bone marrow dosimetry using blood-based models for radiolabeled antibody therapy: a multiinstitutional comparison. J Nucl Med 2004;45:1725-33 

  38. Behr TM, Behe M, Sgouros G. Correlation of red marrow radiation dosimetry with myelotoxicity: empirical factors influencing the radiation-induced myelotoxicity of radiolabeled antibodies, fragments and peptides in pre-clinical and clinical settings. Cancer Biother Radiopharm 2002;17:445-64 

  39. Sgouros G, Stabin M, Erdi Y, Akabani G, Kwok C, Brill AB, et al. Red marrow dosimetry for radiolabeled antibodies that bind to marrow, bone, or blood components. Med Phys 2000;27:2150-64 

  40. Siegel JA, Pawlyk DA, Lee RE, Sasso NL, Horowitz JA, Sharkey RM, et al. Tumor, red marrow, and organ dosimetry for $^{131}$ I-labeled anti-carcinoembryonic antigen monoclonal antibody. Cancer Res 1990;50:1039S-1042S 

  41. Macey DJ, DeNardo SJ, DeNardo GL, DeNardo DA, Shen S. Estimation of radiation absorbed doses to the red marrow in radioimmunotherapy. Clin Nucl Med 1995;20:117-25 

  42. Boucek JA, Turner JH. Validation of prospective whole-body bone marrow dosimetry by SPECT/CT multimodality imaging in $^{131}$ I-anti-CD20 rituximab radioimmunotherapy of non-Hodgkin's lymphoma. Eur J Nucl Med Mol Imaging 2005;32:458-69 

  43. Zanzonico PB, Bigler RE, Sgouros G, Strauss A. Quantitative SPECT in radiation dosimetry. Semin Nucl Med 1989;19:47-61 

  44. Sgouros G, Barest G, Thekkumthala J, Chui C, Mohan R, Bigler RE, et al. Treatment planning for internal radionuclide therapy: three-dimensional dosimetry for nonuniformly distributed radionuclides. J Nucl Med 1990;31:1884-91 

  45. Sgouros G, Chiu S, Pentlow KS, Brewster LJ, Kalaigian H, Baldwin B, et al. Three-dimensional dosimetry for radioimmunotherapy treatment planning. J Nucl Med 1993;34:1595- 601 

  46. Koral KF, Lin S, Fessler JA, Kaminski MS, Wahl RL. Preliminary results from intensity-based CT-SPECT fusion in I-131 anti-B1 monoclonal-antibody therapy of lymphoma. Cancer 1997;80:2538-44 

  47. Koral KF, Zasadny KR, Kessler ML, Luo JQ, Buchbinder SF, Kaminski MS, et al. CT-SPECT fusion plus conjugate views for determining dosimetry in iodine-131-monoclonal antibody therapy of lymphoma patients. J Nucl Med 1994; 35:1714-20 

  48. Ljungberg M, Sjogreen K, Liu X, Frey E, Dewaraja Y, Strand SE. A 3-dimensional absorbed dose calculation method based on quantitative SPECT for radionuclide therapy: evaluation for $^{131}$ I using monte carlo simulation. J Nucl Med 2002;43:1101-9 

  49. Sgouros G, Squeri S, Ballangrud AM, Kolbert KS, Teitcher JB, Panageas KS, et al. Patient-specific, 3-dimensional dosimetry in non-Hodgkin's lymphoma patients treated with $^{131}$ I-anti-B1 antibody: assessment of tumor dose-response. J Nucl Med 2003;44:260-8 

  50. Sjogreen K, Ljungberg M, Strand SE. An activity quantification method based on registration of CT and whole-body scintillation camera images, with application to $^{131}$ I. J Nucl Med 2002;43:972-82 

  51. Koral KF, Dewaraja Y, Li J, Lin Q, Regan DD, Zasadny KR, et al. Update on hybrid conjugate-view SPECT tumor dosimetry and response in $^{131}$ I-tositumomab therapy of previously untreated lymphoma patients. J Nucl Med 2003; 44:457-64 

  52. Koral KF, Yendiki A, Lin Q, Dewaraja YK, Fessler JA. Determining total I-131 activity within a VoI using SPECT, a UHE collimator, OSEM, and a constant conversion factor. IEEE Trans Nucl Sci 2004;51:611-8 

  53. Tagesson M, Ljungberg M, Strand SE. A Monte-Carlo program converting activity distributions to absorbed dose distributions in a radionuclide treatment planning system. Acta Oncol 1996;35:367-72 

  54. Gardin I, Bouchet LG, Assie K, Caron J, Lisbona A, Ferrer L, et al. Voxeldoes: a computer program for 3-D dose calculation in therapeutic nuclear medicine. Cancer Biother Radiopharm 2003;18:109-15 

  55. Sjogreen K, Ljungberg M, Wingardh K, Minarik D, Strand SE. The LundADose method for planar image activity quantification and absorbed-dose assessment in radionuclide therapy. Cancer Biother Radiopharm 2005;20:92-7 

  56. Dewaraja YK, Wilderman SJ, Ljungberg M, Koral KF, Zasadny K, Kaminiski MS. Accurate dosimetry in $^{131}$ I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation. J Nucl Med 2005;46:840-9 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로