$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Genetic Analysis of a Structural Motif Within the Conserved 530 Stem-Loop of Escherichia coli 16S rRNA 원문보기

Journal of microbiology and biotechnology, v.16 no.4, 2006년, pp.569 - 575  

Szatkiewicz Jin P. (Department of Biological Sciences, Wayne State University) ,  Cho Hyun-Dae (Department of Biological Sciences, Wayne State University) ,  Ryou Sang-Mi (Department of Life Science, Chung-Ang University) ,  Kim Jong-Myung (Department of Life Science, Chung-Ang University) ,  Cunningham Philip R. (Department of Biological Sciences, Wayne State University) ,  Lee Kang-Seok (Department of Life Science, Chung-Ang University)

Abstract AI-Helper 아이콘AI-Helper

The 530 stem-loop is a 46 nucleotide stem-loop structure found in all small-subunit ribosomal RNAs. Phylogenetic and mutational studies by others suggest the requirement for Watson-Crick interactions between the nucleotides 505-507 and 524-526 (530 pseudoknot), which are highly conserved. To examine...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

데이터처리

  • Data from Table 1 were analyzed to determine the effect of nucleotide identity upon CAT translation by analysis of variance (ANOVA). 七 P<0.
  • 1. To assess the relationship between free energy and ribosome ftinction (MICs), a regression analysis was performed. However, the correlation coefficient between AG and MIC was not significant (『=0.
본문요약 정보가 도움이 되었나요?

참고문헌 (38)

  1. Allen, P. N. and H. F. Noller. 1989. Mutations in ribosomal proteins S4 and S12 influence the higher order structure of 16S ribosomal RNA. J. Mol. Biol. 208: 457-468 

  2. Bakin, A., J. A. Kowalak, J. A. McCloskey, and J. Ofengand. 1994. The single pseudouridine residue in Escherichia coli 16S RNA is located at position 516. Nucleic Acids Res. 22: 3681-3684 

  3. Bock, A., A. Petzet, and W. Piepersberg. 1979. Ribosomal ambiguity (ram) mutations facilitate diyhydrostreptomycin binding to ribosomes. FEBS Lett. 104: 317-321 

  4. Cannone, J. J., S. Subramanian, M. N. Schnare, J. R. Collett, L. M. D'Souza, Y. Du, B. Feng, N. Lin, L. V. Madabusi, K. M. Muller, N. Pande, Z. Shang, N. Yu, and R. R. Gutell. 2002. The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3: 2 

  5. Capel, M. S., D. M. Engelman, B. R. Freeborn, M. Kjeldgaard, J. A. Langer, V. Ramakrishnan, D. G. Schindler, D. K. Schneider, B. P. Schoenborn, I. Y. Sillers, S. Yabuki, and P. B. Moore. 1987. A complete mapping of the proteins in the small ribosomal subunit of Escherichia coli. Science 238: 1403-1406 

  6. Carter, A. P., W. M. Clemons, D. E. Brodersen, R. J. Morgan- Warren, B. T. Wimberly, and V. Ramakrishnan. 2000. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407: 340-348 

  7. Clarke, L. and J. Carbon. 1976. A colony bank containing synthetic ColE1 hybrid plasmids representative of the entire E. coli genome. Cell 9: 91-99 

  8. Garrett, R. A., S. R. Douthwaite, A. Liljas, A. T. Matheson, P. B. Moore, and H. F. Noller (eds.). 2000. The Ribosome: Structure, Function, Antibiotics, and Cellular Interactions. ASM Press, Washington DC, U.S.A 

  9. Gauthier, A., M. Turmel, and C. Lemieux. 1988. Mapping of chloroplast mutations conferring resistance to antibiotics in Chlamydomonas: Evidence for a novel site of streptomycin resistance in the small subunit rRNA. Mol. Gen. Genet. 214: 192-197 

  10. Gutell, R. R. 1993. The simplicity behind the evolution of complex structure in ribosomal RNA, pp. 477-488. In Nierhaus, K. H., F. Franceschi and A. R. Subramanian (eds.), The Translational Apparatus: Structure, Function, Regulation, Evolution. Plenum Press, New York, NY. U.S.A 

  11. Gutell, R. R., N. Larsen, and C. R. Woese. 1994. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol. Rev. 58: 10-26 

  12. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580 

  13. Higuchi, R. 1989. Using PCR to engineer DNA, pp. 61-70. In H. A. Erlich (ed.), PCR Technology. Stockton Press, New York, NY, U.S.A 

  14. Jacobson, A. B. and M. Zuker. 1993. Structure analysis by energy dot plot of a large mRNA. J. Mol. Biol. 233: 261- 269 

  15. Kang, T. J., H. K. Song, J. H. Ahn, C. Y. Choi, and H. Joo. 2003. Optimization of programmed suppression in a cellfree protein synthesis system with unnatural amino acid S- (2-nitrobenzyl)cysteine. J. Microbiol. Biotechnol. 13: 344- 347 

  16. Kim, S. H., K. Y. Kim, C. H. Kim, W. S. Lee, M. Chang, and J. H. Lee. 2004. Phylogenetic analysis of Harmful Algal Bloom (HAB)-causing dinoflagellates along the Korean coasts, based on SSU rRNA gene. J. Microbiol. Biotechnol. 14: 959-966 

  17. Lee, K., C. A. Holland-Staley, and P. R. Cunningham. 1996. Genetic analysis of the Shine-Dalgarno interaction: Selection of alternative functional mRNA-rRNA combinations. RNA 2: 1270-1285 

  18. Lee, K., S. Varma, J. SantaLucia, Jr, and P. R. Cunningham. 1997. In vivo determination of RNA structure-function relationships: Analysis of the 790 loop in ribosomal RNA. J. Mol. Biol. 269: 732-743 

  19. Lee, K., C. A. Holland-Staley, and P. R. Cunningham. 2001. Genetic approaches to studying protein synthesis: Effects of mutations at ${\psi}516$ and A535 in Escherichia coli 16S rRNA. J. Nutr. 131: 2994S-3004S 

  20. Melancon, P., C. Lemieux, and L. Brakier-Gingras. 1988. A mutation in the 530 loop of Escherichia coli 16S ribosomal RNA causes resistance to streptomycin. Nucleic Acids Res. 16: 9631-9639 

  21. Moazed, D. and H. F. Noller. 1990. Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16 S rRNA. J. Mol. Biol. 211: 135-145 

  22. O'Connor, M., H. U. Goringer, and A. E. Dahlberg. 1992. A ribosomal ambiguity mutation in the 530 loop of E coli 16S rRNA. Nucleic Acids Res. 20: 4221-4227 

  23. Ogle, J. M., D. E. Brodersen, W. M. Clemons, Jr, M. J. Tarry, A. P. Carter, and V. Ramakrishnan. 2001. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292: 897-902 

  24. Ogle, J. M., V. M. Frank, M. J. Tarry, and V. Ramakrishnan. 2002. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111: 721-732 

  25. Ozaki, M., S. Mizushima, and M. Nomura. 1969. Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. coli. Nature 222: 333- 339 

  26. Park, H. G., H. G. Ko, S. H. Kim, and W. M. Park. 2004. Molecular identification of Asian isolates of medicinal mushroom Hericium erinaceum by phylogenetic analysis of nuclear ITS rDNA. J. Microbiol. Biotechnol. 14: 816- 821 

  27. Powers, T. and H. F. Noller. 1994. Selective perturbation of G530 of 16S rRNA by translational miscoding agents and a streptomycin-dependence mutation in protein S12. J. Mol. Biol. 235: 156-172 

  28. Powers, T. and H. F. Noller. 1991. A functional pseudoknot in 16S ribosomal RNA. EMBO J. 10: 2203-2214 

  29. Santer, M., U. Santer, K. Nurse, A. Bakin, P. R. Cunningham, M. Zain, D. O'Connell, and J. Ofengand. 1993. Functional effects of a G to U base change at position 530 in a highly conserved loop of Escherichia coli 16S RNA. Biochemistry 32: 5539-5547 

  30. Santer, U. V., J. Cekleniak, S. Kansil, M. Santer, M. O'Connor, and A. E. Dahlberg. 1995. A mutation at the universally conserved position 529 in Escherichia coli 16S rRNA creates a functional but highly error prone ribosome. RNA 1: 89-94 

  31. Stern, S., R. C. Wilson, and H. F. Noller. 1986. Localization of the binding site for protein S4 on 16 S ribosomal RNA by chemical and enzymatic probing and primer extension. J. Mol. Biol. 192: 101-110 

  32. Stern, S., T. Powers, L. M. Changchien, and H. F. Noller. 1988. Interaction of ribosomal proteins S5 1988: S6 S11 S12, S18 and S21 with 16 S rRNA. J. Mol. Biol. 201: 683- 695 

  33. Stern, S., T. Powers, L. M. Changchien, and H. F. Noller. 1989. RNA-protein interactions in 30S ribosomal subunits: Folding and function of 16S rRNA. Science 244: 783-790 

  34. Thompson, R. C. 1988. EF-Tu provides an internal kinetic standard for translational accuracy. Trends Biochem. Sci. 13: 91-93 

  35. Woese, C. R. and R. R. Gutell. 1989. Evidence for several higher order structural elements in ribosomal RNA. Proc. Natl. Acad. Sci. USA 86: 3119-3122 

  36. Yoon, S. I., S. Y. Kim, Y. W. Lim, and H. S. Jung. 2003. Phylogenetic evaluation of stereoid fungi. J. Microbiol. Biotechnol. 13: 406-414 

  37. Yusupov, M. M., G. Z. Yusupova, A. Baucom, K. Lieberman, T. N. Earnest, J. H. Cate, and H. F. Noller. 2001. Crystal structure of the ribosome at $5.5\;{\AA}$ resolution. Science 292: 883-896 

  38. Zueva, V. S., A. S. Mankin, A. A. Bogdanov, and L. A. Baratova. 1985. Specific fragmentation of tRNA and rRNA at a 7-methylguanine residue in the presence of methylated carrier RNA. Eur. J. Biochem. 146: 679-687 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로