$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Deep-sea Hydrothermal Vents: Ecology and Evolution 원문보기

Journal of ecology and field biology, v.29 no.2, 2006년, pp.175 - 183  

Won, Yong-Jin (Department of Life Sciences, Ewha Womans University)

Abstract AI-Helper 아이콘AI-Helper

The discovery of deep-sea hydrothermal vents and their ecosystems is a monumental landmark in the history of Ocean Sciences. Deep-sea hydrothermal vents are scattered along the global mid-ocean ridges and back-arc basins. Under sea volcanic phenomena related to underlying magma activities along mid-...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • amphipods, copepods, and galatheid and brachyuran crabs), Vestimentiferan tube worm Tevnia jerichonana, other Vestimenti­ feran Riftia pahyptila, mussels Bathymodiolus thermophilus, galatheid crabs and serpulid polychaetes. The authors hypothesize that the above events might be general sequence of biological succession along the northern East Pacific Rise.
본문요약 정보가 도움이 되었나요?

참고문헌 (101)

  1. Belkin S, Nelson DC, Jannasch HW. 1986. Symbiotic assimilation of $CO_2$ in two hydrothermal vent animals, the mussel Bathymodiolus thermophilus and the tube worm Riftia pachyptila. Biol Bull 170: 110-121 

  2. Black MB, Halanych KM, Maas PAY, Hoeh WR, Hashimoto J, Desbruyeres D, et al. 1997. Molecular systematics of vestimentiferan tube worms from hydrothermal vents and cold-water seeps. Mar Biol 130: 141-149 

  3. Black MB, Lutz RA, Vrijenhoek RC. 1994. Gene flow among vestimentiferan tube worm (Riftia pachyptila) populations from hydrothermal vents of the Eastern Pacific. Mar Biol 120: 33-39 

  4. Black MB, Trivedi A, Maas P, Lutz RA, Vrijenhoek RC. 1998. Population genetics and biogeography of vestimentiferan tube worms. Deep See Res II 45: 365-382 

  5. Boss KJ, Turner RD. 1980. The giant white clam from the Galapagos rift, Calyptogena magnifica species novum. Malacologia 20: 161-194 

  6. Cary SC, Cottrell MT, Stein JL, Camacho F, Desbruyeres D. 1997. Molecular identification and localization of filamentous symbiotic bacteria associated with the hydrothermal vent annelid Alvinella pompejana. Appl Environ Microbiol 63: 1124-1130 

  7. Cary SC, Fisher CR, Felbeck H. 1988. Mussel growth supported by methane as sole carbon and energy source. Science 240: 78-80 

  8. Cary SC, Giovannoni SJ. 1993. Transovarial inheritance of endosymbiotic bacteria in clams inhabiting deep-sea hydrothermal vents and cold seeps. Proc Natl Acad Sci USA 90: 5695-5699 

  9. Cary SC, Warren W, Anderson E, Giovannoni SJ. 1993. Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques. Mol Mar Biol Biotech 2: 51-62 

  10. Cavanaugh CM. 1983. Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature 302: 58- 61 

  11. Cavanaugh CM. 1994. Microbial symbiosis: Patterns of diversity in the marine environment. Am Zool 34: 79-89 

  12. Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB. 1981. Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: Possible Chemoautotrophic symbionts. Science 213: 340-342 

  13. Cavanaugh CM, Levering PR, Maki JS, Mitchell R, Lidstrom ME. 1987. Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature 325: 346-348 

  14. Cavanaugh CM, Wirsen CO, Jannasch HW. 1992. Evidence for methylotrophic symbionts in a hydrothermal vent mussel (Bivalvia: Mytilidae) from the Mid-Atlantic Ridge. Appl Environ Microbiol 58: 3799-3803 

  15. Childress JJ, Fisher CR, Brooks JM, Kennicutt MC, II, Bidigare R, Anderson AE. 1986. A methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: Mussels fueled by gas. Science 233: 1306-1308 

  16. Corliss JB, Ballard RD. 1977. Oasis of life in the cold abyss. National Geographic 152: 441-453 

  17. Craddock C, Hoeh WR, Gustafson RG, Lutz RA, Hashimoto J, Vrijenhoek RJ. 1995a. Evolutionary relationships among deepsea mytilids (Bivalvia: Mytilidae) from hydrothermal vents and cold-water methane/sulfide seeps. Mar Biol 121: 477-485 

  18. Craddock C, Hoeh WR, Lutz RA, Vrijenhoek RC. 1995b. Extensive gene flow in the deep-sea hydrothermal vent mytilid Bathymodiolus thermophilus. Mar Biol 124: 137-146 

  19. Di Meo CA, Wilbur AE, Holben WE, Feldman RA, Vrijenhoek RC, Cary SC. 2000. Genetic variation among endosymbionts of widely distributed vestimentiferan tubeworms. Appl Environ Microbiol 66: 651-658 

  20. Distel DL, Baco AR, Chuang E, Morrill W, Cavanaugh C, Smith CR. 2000a. Do mussels take wooden steps to deep-sea vents? Nature 403: 725-726 

  21. Distel DL, Baco AR, Chuang E, Morrill W, Cavanaugh C, Smith CR. 2000b. Marine ecology: Do mussels take wooden steps to deep-sea vents? Nature 403: 725 

  22. Distel DL, Lee HK, Cavanaugh CM. 1995. Intracellular coexistence of methano- and thioautotrophic bacteria in a hydrothermal vent mussel. Proc Natl Acad Sci USA 92: 9598-9602 

  23. Edwards DB, Nelson DC. 1991. DNA-DNA solution hybridization studies of the bacterial symbonts of hydrothermal vent tube worms (Riftia pachyptila and Tevnia jerichonana). Appl Environ Microbiol 57: 1082-1088 

  24. Endow K, Ohta S. 1989. The symbiotic relationship between bacteria and a mesogastropod snail, Alviniconcha hessleri, collected from hydrothermal vents of the Mariana Back-Arc Basin. Bull Jap Soc Micro Ecol 3: 73-82 

  25. Endow K, Ohta S. 1990. Occurrence of bacteria in the primary oocytes of vesicomyid clam Calyptogena soyoae. Mar Ecol Prog Ser 64: 309-311 

  26. Felbeck H. 1981. Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera). Science 213: 336-338 

  27. Felbeck H, Childress JJ, Somero GN. 1981. Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature 291-293 

  28. Feldman RA, Black MB, Cary CS, Lutz RA, Vrijenhoek RC. 1997. Molecular phylogenetics of bacterial endosymbionts and their vestimentiferan hosts. Mol Mar Bio Biotech 6: 268-277 

  29. Fiala-Medioni A, Alayse AM, Cahet G. 1986. Evidence of in situ uptake and incorporation of bicarbonate and amino acids by a hydrothermal vent mussel. J Exp Mar Biol and Ecol 96: 191-198 

  30. Fiala-Medioni A, Felbeck H. 1990. Autotrophic processes in invertebrate nutrition: Bacterial symbiosis in bivalve molluscs. Comp Physiol 5: 49-69 

  31. Fiala-Medioni A, McKiness ZP, Dando P, Boulegue J, Mariotti A, Alayse-Danet AM, et al. 2002. Ultrastructural, biochemical, and immunological characterization of two populations of the mytilid mussel Bathymodiolus azoricus from the Mid-Atlantic Ridge: evidence for a dual symbiosis. Mar Biol 141: 1035-1044 

  32. Fisher CR. 1990. Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev Aquatic Sci 2: 399-436 

  33. Fisher CR, Childress JJ, Oremland RS, Bidigare RR. 1987. The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep-sea mussels. Mar Biol 96: 59-71 

  34. France SC, Hessler RR, Vrijenhoek RC. 1992. Genetic differentiation between spatially-disjunct populations of the deep-sea, hydrothermal vent-endemic amphipod Ventiella sulfuris. Mar Biol 114: 551-559 

  35. Fujio S, Imasato N. 1991. Diagnostic calculation for circulation and water mass movement in the deep pacific. J Geophys Res 96: 759-774 

  36. Gage JD, Tyler PA. 1991. Deep Sea Biology: a Natural history of Organisms at the Deep-Sea Floor. Cambridge, Cambridge University Press 

  37. Goffredi SK, Hurtado LA, Hallam SJ, Vrijenhoek RC. 2003. Evolutionary relationships of deep-sea vent and cold seep clams (Mollusca: Vesicomyidae) of the 'pacifica/lepta' species complex. Mar Biol 142: 311-320 

  38. Goffredi SK, Waren A, Orphan VJ, Van Dover CL, Vrijenhoek RC. 2004. Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean. Appl Environ Microbiol 70: 3082-3090 

  39. Grassle JF. 1985. Hydrothermal vent animals: distribution and biology. Science 229: 713-717 

  40. Grassle JF. 1986. The ecology of deep-sea hydrothermal vent communities. Adv Mar Biol 23: 301-362 

  41. Halanych KM, Feldman RA, Vrijenhoek RC. 2001. Molecular evidence that Sclerolinum brattstromi is closely related to vestimentiferans, not frenulate pogonophorans (Siboglinidae, Annelida). Biol Bull 201: 65-75 

  42. Herry A, Diouris M, Le Pennec M. 1989. Chemoautotrophic symbionts and translocation of fixed carbon from bacteria to host tissues in the littoral bivalve Loripes lucinalis (Lucinidae). Mar Biol 101: 305-312 

  43. Hurtado LA, Lutz RA, Vrijenhoek RC. 2004. Distinct patterns of genetic differentiation among annelids of eastern Pacific hydrothermal vents. Mol Ecol 13: 2603-2615 

  44. Hurtado LA, Mateos M, Lutz RA, Vrijenhoek RC. 2003. Coupling of bacterial endosymbiont and host mitochondrial genomes in the hydrothermal vent clam Calyptogena magnifica. Appl Environ Microbiol 69: 2058-2064 

  45. Jacobs DK, Lindberg DR. 1998. Oxygen and evolutionary patterns in the sea: Onshore/offshore trends and recent recruitment of deep-sea faunas. Proc Natl Acad Sci USA 95: 9396-9401 

  46. Jones ML. 1985. On the Vestimentifera, new phylum: six new species, and other taxa, from hydrothermal vents and elsewhere. Bull Biol Soc Wash 6: 117-158 

  47. Jones ML, Gardiner SL. 1988. Evidence for a transient digestive tract in Vestimentifera. Proc Biol Soc Wash 101: 423-433 

  48. Jones WJ, Won Y-J, Maas PAY, Smith PJ, Lutz RA, Vrijenhoek RC. 2005. Evolution of habitat use by deep-sea mussels. Mar Biol 148: 841-851 

  49. Karl SA, Schutz SJ, Desbruyeres D, Lutz RA, Vrijenhoek RC. 1996. Molecular analysis of gene flow in the hydrothermal-vent clam Calyptogena magnifica. Mol Mar Biol Biotech 5: 193-202 

  50. Kenk VC, Wilson BR. 1985. A new mussel (Bivalvia, Mytilidae) from hydrothermal vents in the Galapagos Rift zone. Malacologia 26: 253-271 

  51. Kojima S, Hashimoto T, Hasegawa M, Murata S, Ohta S, Seki H, et al. 1993. Close phylogenetic relationship between Vestimentifera (tube worms) and Annelida revealed by the amino acid sequence of elongation factor-1a. J Mol Evol 37: 66-70 

  52. Little CTS, Vrijenhoek RC. 2003. Are hydrothermal vent animals living fossils? Trends Ecol Evol 18: 582-588 

  53. Lupton JE, Craig H. 1981. A major helium-3 source at 15 $^{\circ}$ S on the East Pacific Rise. Science 214: 13-18 

  54. Lutz RA. 1988. Dispersal of organisms at deep-sea hydrothermal vents: a review. Oceanol Acta Special Vol: 23-30 

  55. Lutz RA, Jablonski D, Rhoads DC, Turner RD. 1980. Larval dispersal of a deep-sea hydrothermal vent bivalve from the Galapagos Rift. Mar Biol 57: 127-133 

  56. Lutz RA, Kennish MJ. 1993. Ecology of deep-sea hydrothermal vent communities: A review. Rev Geophys 31: 211-242 

  57. Macpherson E, Jones WJ, Segonzac M. 2005. A new squat lobster family of Galatheoidea (Crustacea, Decapoda, Anomura) from the hydrothermal vents of the Pacific-Antarctic Ridge. Zoosystema 27 

  58. Marsh AG, Mullineaux LS, Young CM, Manahan DT. 2001. Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents. Nature 411: 77-80 

  59. McHugh D. 1997. Molecular evidence that echiurans and pogonophorans are derived annelids. Proc Natl Acad Sci USA 94: 8006-8009 

  60. Mullineaux LS, Weibe PH, Baker ET. 1995. Larvae of benthic invertebrates in hydrothermal vent plumes over the Juan de Fuca Ridge. Mar Biol 122: 585-596 

  61. Nelson DC, Fisher CR. 1995. Chemoautotrophic and methanotrophic endosymbiotic bacteria at deep-sea hydrothermal vents. In: The microbiology of deep-sea hydrothermal vents, (Karl DM, Raton B, eds) CRC Press, Florida, pp 125-167 

  62. Nelson K, Fisher C. 2000. Absence of cospeciation in deep-sea vestimentiferan tube worms and their bacterial endosymbionts. Symbiosis 28: 1-15 

  63. Newman WA. 1985. The abyssal hydrothermal vent invertebrate fauna, a glimpse of antiquity? Bull Biol Soc Wash 6: 231-242 

  64. Olu K, Duperret A, Sibuet M, Foucher J-P, Fiala-Medioni A. 1996. Structure and distribution of cold seep communities along the Peruvian active margin: relationship to geological and fluid patterns. Mar Ecol Prog Ser 132: 109-125 

  65. Palumbi SR. 1994. Genetic divergence, reproductive isolation, and marine speciation. Ann Rev Ecol Syst 25: 547-572 

  66. Paull CK, Hecker B, Commeau R, Freeman-Lynde RP, Neumann C, Corso WP, et al. 1984. Biological communities at the Florida Escarpment resemble hydrothermal vent taxa. Science 226: 965- 967 

  67. Peek A, Gustafson R, Lutz R, Vrijenhoek R. 1997. Evolutionary relationships of deep-sea hydrothermal vent and cold-water seep clams (Bivalvia: Vesicomyidae): Results from the mitochondrial cytochrome oxidase subunit I. Mar Biol 130: 151-161 

  68. Peek AS, Feldman RA, Lutz RA, Vrijenhoek RC. 1998. Cospeciation of chemoautotrophic bacteria and deep sea clams. Proc Natl Acad Sci USA 95: 9962-9966 

  69. Powell MA, Somero GN. 1985. Sulfide oxidation occurs in the animal tissue of the gutless clam, Solemya reidi. Biol Bull 169: 164-181 

  70. Pradillon F, Shillito B, Young C, Gaill F. 2001. Developmental arrest in vent worm embryos. Nature 413: 698-699 

  71. Rau GH. 1981. Hydrothermal vent clam and tube worm $^{13}C/^{12}C$ : Further evidence of nonphotosynthetic food sources. Science 213: 338-340 

  72. Rau GH, Hedges JI. 1979. Carbon-13 depletion in a hydrothermal vent mussel: Suggestion of a chemosynthetic food source. Science 203: 648-649 

  73. Robinson JJ, Polz MF, Fiala-Medioni A, Cavanaugh CM. 1998. Physiological and immunological evidence for two distinct C1- utilizing pathways in Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), a dual endosymbiotic mussel from the Mid-Atlantic Ridge. Mar Biol 132: 625-633 

  74. Rouse GW, Fauchald K. 1995. The articulation of annelids. Zool Scr 24: 269-301 

  75. Rouse GW, Goffredi SK, Vrijenhoek RC. 2004. Osedax: boneeating marine worms with dwarf males. Science 305: 668-671 

  76. Salerno JL, Macko SA, Hallam SJ, Bright M, Won Y-J, McKiness Z, et al. 2005. Characterization of symbiont populations in lifehistory stages of mussels from chemosynthetic environments. Biol Bull 208: 145-155 

  77. Scheltema RS. 1986. On dispersal and planktonic larvae of benthic invertebrates: an eclectic overview and summary of problems. Bull Mar Sci 39: 290-322 

  78. Shank TM, Fornari DJ, Von Damm KL, Lilley MD, Haymon RM, Lutz RA. 1998. Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9 $^{\circ}$ 50'N East Pacific Rise). Deep Sea Res II 45: 465-515 

  79. Sibuet M, Olu K. 1998. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res II 45: 517-567 

  80. Southward E. 1999. Development of Perviata and Vestimentifera (Pogonophora). Hydrobiologia 402: 185-202 

  81. Southward EC. 1988. Development of the gut and segmentation of newly settled stages of Ridgeia (Vestimentifera): implications for relationship between Vestimentifera and Pogonophora. J Mar Biol Assoc UK 68: 465-487 

  82. Spiess FN, Macdonald KC, Atwater T, Ballard R, Carranza A, Cordoba D, et al. 1980. East Pacific Rise: hot springs and geopysical experiments. Science 207: 1421-1433 

  83. Stein JL, Cary SC, Hessler RR, Ohta S, Vetter RD, Childress JJ, et al. 1988. Chemoautotrophic symbiosis in a hydrothermal vent gastropod. Biol Bull 174: 373-378 

  84. Tunnicliffe V, Fowler MR. 1996. Influence of sea-floor spreading on the global hydrothermal vent fauna. Nature 379: 531-533 

  85. Tunnicliffe V, McArthur AG, Mchugh D. 1998. A biogeographical perspective of the deep-sea hydrothermal vent fauna. Adv Mar Biol 34: 353-442 

  86. Turner RD, Lutz RA, Jablonski D. 1985. Modes of molluscan larval development at deep-sea hydrothermal vents. Biol Soc Wash Bull 6: 167-184 

  87. Tyler PA, Young CM. 1999. Reproduction and dispersal at vents and cold seeps. J Mar Biol Assoc UK 79: 193-208 

  88. Van Dover CL. 1990. Biogeography of hydrothermal vent communities along seafloor spreading centers. Trends Ecol Evol 5: 242-246 

  89. Van Dover CL. 2000. The Ecology of Deep-Sea Hydrothermal Vents. Princeton University Press, Princeton 

  90. Van Dover CL, German CR, Speer KG, Parson LM, Vrijenhoek RC. 2002. Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295: 1253-1257 

  91. Van Dover CL, Hessler RR. 1990. Spatial variation in faunal composition of hydrothermal vent communities on the East Pacific Rise and Galapagos spreading center. In: Gorda Ridge: A Seafloor Spreading Center in the United States' Exclusive Economic Zone, (McMurray GR, eds). Springer-Verlag New York Inc., New York, pp 253-264 

  92. Van Dover CL, Humphris SE, Fornari D, Cavanaugh CM, Collier R, Goffredi SK, et al. 2001. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294: 818-823 

  93. Vrijenhoek RC. 1997. Gene flow and genetic diversity in naturally fragmented metapopulations of deep-sea hydrothermal vent animals. J Heredity 88: 285-293 

  94. Vrijenhoek RC, Shank T, Lutz RA. 1998. Gene flow and dispersal in deep-sea hydrothermal vent animals. Cah Biol Mar 39: 363-366 

  95. Waren A, Bengtson S, Goffredi SK, Van Dover CL. 2003. A hotvent gastropod with iron sulfide dermal sclerites. Science 302: 1007 

  96. Watabe H, Hashimoto J. 2002. A new species of the genus Rimicaris (Alvinocarididae: Caridea: Decapoda) from the active hydrothermal vent field, 'Kairei Field,' on the Central Indian Ridge, the Indian Ocean. Zool Sci 19: 1167-1174 

  97. Won Y, Young CR, Lutz RA, Vrijenhoek RC. 2003b. Dispersal barriers and isolation among deep-sea mussel populations (Mytilidae: Bathymodiolus) from eastern Pacific hydrothermal vents. Mol Ecol 12: 169-184 

  98. Won Y-J, Hallam SJ, O'Mullan GD, Pan IL, Buck KR, Vrijenhoek RC. 2003a. Environmental acquisition of thiotrophic endosymbionts by deep-seea mussel of the genus Bathymodiolus. Appl Environ Microbiol 69: 6785-6792 

  99. Won Y-J, Maas PAY, Dover CLV, Vrijenhoek RC. 2002. Habitat reversal in vent and seep mussels: seep species, Bathymodiolus heckerae, derived from vent ancestors. Cah Biol Mar 34: 387- 390 

  100. Young CM. 1994. A tale of two dogmas: the early history of deepsea reproductive biology. In: Reproduction, larval biology, and recruitment of the deep-sea benthos, (Young CM, Eckelberger KJ, eds) Columbia University Press, New York, pp 1-25 

  101. Young CM, Vazquez E, Metaxas A, Tyler PA. 1996. Embryology of vestimentiferan tube worms from deep-sea methane/sulphide seeps. Nature 381: 514-516 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로