$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

주사전자현미경 분석을 활용한 자연환경 퇴적시료의 생물기원구조 관찰
Application of Scanning Electron Microscopy (SEM) for Biotically Induced Microstructure Observation in Sedimentary Sample of Natural Condition 원문보기

광물과 암석 = Korean journal of mineralogy and petrology, v.33 no.3, 2020년, pp.165 - 173  

박한범 (연세대학교지구시스템과학과) ,  김진욱 (연세대학교지구시스템과학과)

초록
AI-Helper 아이콘AI-Helper

생물체의 활동 특히 미생물의 활동은 직·간접적으로 전 지구적으로 분포하는 퇴적물 및 암석 내부 광물의 형성 및 변형에 영향을 주고, 일부는 특징적인 생물기원구조를 형성한다. 특히, 특징적인 생물기원구조에 분포하는 광물은 기존에 알려진 무기적 과정을 통하여 형성되기 어려운 환경에서 형성되기도 하고, 무기적 과정을 통하여 형성된 광물과는 다른 물성 및 특성을 나타낸다. 이러한 생물체의 영향을 받아 형성된 생물기원구조에 대해 연구·분석하는 것은 새로운 광물 형성 메커니즘을 규명하는데 필수적이라 할 수 있다. 따라서 본 논문은 심해저 망간각 및 해저열수분출공 지역 미생물 매트 시료를 예로 들어, 주사전자현미경 분석을 통한 자연환경에 분포하는 생물기원구조 관찰에 대해 소개하고 분석방법, 장점 및 활용에 대해 설명하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

The activity of living microorganism directly or indirectly affects to the biomineralization in sediments and rocks that display the unique biotic structure. Minerals in the biotic structures showed unique properties and bypass the thermodynamic and kinetic barriers. Therefore, investigations on the...

주제어

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 이러한 광물-미생물 반응작용, 생물기원구조에 대해 규명하기 위해서는 나노-마이크론 사이즈의 분석이 가능한 전자현미경 분석이 필수불가결하다 할 수 있다. 따라서 본 연구에서는 자연 환경 지질 시료인 심해저 망간각(deep-sea ferromanganese crust; Fe-Mn crust) 및 해저열수분출공 지역 미생물 매트(hydrothermal vent area microbial mat) 시료를 대상으로 주사전자현미경(scanning electron microscopy; SEM)을 이용한 지질 시료 내 생물기원 구조 관찰의 장점 및 추가적인 활용방안에 대해 설명하고자 한다.
  • 이번 연구에서 자연환경 시료에 분포하는 생물기원구조를 관찰·연구하는 방법 중 하나인 주사전자현미경 분석의 장점 및 활용방안에 대해 제시하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
망간각의 특징은 무엇인가? 망간각은 성장속도가 대략 2 mm/Ma로 매우 느리기 때문에, 주변 환경변화로 인한 층의 변화가 뚜렷한 것이 특징이다(Hein and Koschinsky, 2014). 본 연구에 사용한 망간각 시료 역시 비교적 잘 부서지는 조직(crumbled texture)을 보이며, 다공성(porous) 특성을 보이는 층과, 단단하고 조밀한 조직(blocky and dense texture)을 보이는 층으로 구분이 되었다.
코콜리드 화석군집에서 관찰되는 코콜리드의 구성적 특징은 무엇인가? 코콜리드 화석군집은 다공성층에서도 일부 나타났지만, 조밀한 조직을 보이는 층에서 더욱 우세하게 나타났다. 코콜리드는 10 μm내외의 크기를 보이며, 에너지 분산 X선 분석 결과 칼슘(Ca), 인(P). 플루오르(F)가 나타나는 칼슘 플루오르인회석(calcium fluorapatite; CFA)광물로 구성된 것을 확인하였다. 코콜리드는 대양에 분포하는 식물성 플랑크톤의 한 종류로, 3400 만년(34 Ma) 및 2300 만년(23 Ma) 전, 해수의 온도가 높았던 시기에 특징적으로 우세하게 분포하였던 것으로 알려져 있어, 이와 관련된 생물기원구조를 기준층(key bed)으로 사용할 수 있다.
망간각 시료 전체에 대하여 주요하게 보이는 생물기원구조에는 무엇이 있는가? , 2018), 추가적으로 이와 다른 모양 및 조직을 보이는 특징적인 생물기원구조도 관찰되었다. 망간각 시료 전체에 대하여 주요하게 보이는 생물기원구조로써, 1 μm–5 μm의 크기의 타원체 모양(ellipsoidal shaped) 및 캡슐 모양(capsule shaped) 생물기원구조가 관찰되었고(Fig. 2a and b), 타원체 및 캡슐 모양의 생물기원구조와 함께 무작위하게 분포된 직경 1 μm 미만의 원통형의 빈 공간(sub-micron cylindrical void space)을 보이는 시스 모양의 튜브(sheath-like tube) 구조가 관찰되었다(Fig. 2c and d).
질의응답 정보가 도움이 되었나요?

참고문헌 (33)

  1. Allen, M.A., Goh, F., Burns, B.P., and Neilan, B.A. (2009) Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology, 7(1), 82-96. 

  2. Bau, M. and Moller, P. (1993) Rare earth element systematics of the chemically precipitated component in Early Precambrian iron formations and the evolution of the terrestrial atmosphere-hydrosphere-lithosphere system. Geochimica et Cosmochimica Acta, 57(10), 2239-2249. 

  3. Dolgikh, G.I., Batyushin, G.N., Valentin, D.I., Dolgikh, S.G., Kovalev, S.N., Ovcharenko, V.V., and Yakovenko, S.V. (2002) Seismoacoustic Hydrophysical Complex for Monitoring the Atmosphere-Hydrosphere-Lithosphere System. Instruments and Experimental Techniques, 45(3), 401-403. 

  4. Emerson, D. and Moyer, C.L. (2002) Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Applied and Environmental Microbiology, 68(6), 3085-3093. 

  5. Gat, J.R. and Airey, P.L. (2006) Stable water isotopes in the atmosphere/biosphere/lithosphere interface: scaling-up from the local to continental scale, under humid and dry conditions. Global and Planetary Change, 51(1-2), 25-33. 

  6. Govenar, B. (2012) Energy transfer through food webs at hydrothermal vents: Linking the lithosphere to the biosphere. Oceanography, 25(1), 246-255. 

  7. Haferburg, G. and Kothe, E. (2007) Microbes and metals: interactions in the environment. Journal of basic microbiology, 47(6), 453-467. 

  8. Haferburg, G. and Kothe, E. (2012) Biogeosciences in heavy metal-contaminated soils. In Bio-Geo Interactions in Metal-Contaminated Soils (pp. 17-34). Springer, Berlin, Heidelberg. 

  9. Han, R., Liu, T., Li, F., Li, X., Chen, D., and Wu, Y. (2018) Dependence of secondary mineral formation on Fe (II) production from ferrihydrite reduction by Shewanella oneidensis MR-1. ACS Earth and Space Chemistry, 2(4), 399-409. 

  10. Hein, J.R. and Koschinsky, A. (2014). Deep-ocean ferromanganese crusts and nodules. 

  11. Iglesias-Rodriguez, M.D., Halloran, P.R., Rickaby, R.E., Hall, I.R., Colmenero-Hidalgo, E., Gittins, J.R., Green, R.H., Tyrrell, T., Gibbs, S.J., Dassow, P., Rehm, E., Armbrust, E.V., and Boessenkool, K. P. (2008) Phytoplankton calcification in a high-CO2 world. science, 320(5874), 336-340. 

  12. Kim, J.W., Peacor, D. R., Tessier, D., and Elsass, F. (1995) A technique for maintaining texture and permanent expansion of smectite interlayers for TEM observations. Clays and clay minerals, 43(1), 51-57. 

  13. Kim, J., Dong, H., Seabaugh, J., Newell, S. W., and Eberl, D. D. (2004) Role of microbes in the smectite-to-illite reaction. Science, 303(5659), 830-832. 

  14. Kim, J., Dong, H., Yang, K., Park, H., Elliott, W.C., Spivack, A., Koo, T., Kim, G., Morono, Y., Henkel, S., Inagaki, F., Zeng, Q., Hoshino, T., and Heuer, B. (2019) Naturally occurring, microbially induced smectite-to-illite reaction. Geology, 47(6), 535-539. 

  15. Koschinsky, A., Stascheit, A., Bau, M., and Halbach, P. (1997) Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts. Geochimica et Cosmochimica Acta, 61(19), 4079-4094. 

  16. Larock, P.A. and Ehrlich, H.L. (1975) Observations of bacterial microcolonies on the surface of ferromanganese nodules from Blake Plateau by scanning electron microscopy. Microbial ecology, 2(1), 84-96. 

  17. Li, Y.H. (1972) Geochemical mass balance among lithosphere, hydrosphere, and atmosphere. American Journal of Science, 272(2), 119-137. 

  18. Lovell, R.D., Jarvis, S.C., and Bardgett, R.D. (1995) Soil microbial biomass and activity in long-term grassland: effects of management changes. Soil Biology and Biochemistry, 27(7), 969-975. 

  19. Lysyuk, G.N. (2011, September) Biomineral microstructures in ferromanganese nodules: evidence of the biological and abiogenous origin. In Instruments, Methods, and Missions for Astrobiology XIV (Vol. 8152, p. 815207). International Society for Optics and Photonics. 

  20. Marino, E., Gonzalez, F. J., Lunar, R., Reyes, J., Medialdea, T., Castillo-Carrion, M., Bellido, E., and Somoza, L. (2018) High-resolution analysis of critical minerals and elements in Fe-Mn crusts from the Canary Island Seamount Province (Atlantic Ocean). Minerals, 8(7), 285. 

  21. Martin, Y.E. and Johnson, E.A. (2012) Biogeosciences survey: Studying interactions of the biosphere with the lithosphere, hydrosphere and atmosphere. Progress in Physical Geography, 36(6), 833-852. 

  22. Mbow, C. (2014). Biogeoscience: Africa's greenhouse-gas budget is in the red. Nature, 508(7495), 192-193. 

  23. Picard, A., Kappler, A., Schmid, G., Quaroni, L., and Obst, M. (2015) Experimental diagenesis of organo-mineral structures formed by microaerophilic Fe (II)-oxidizing bacteria. Nature Communications, 6(1), 1-8. 

  24. Riquelme, C., Marshall Hathaway, J.J., Enes Dapkevicius, M.D.L., Miller, A.Z., Kooser, A., Northup, D.E., Jurado, V., Fernandez, O., Saiz-Jimenez, C., and Cheeptham, N. (2015) Actinobacterial diversity in volcanic caves and associated geomicrobiological interactions. Frontiers in microbiology, 6, 1342. 

  25. Schindler, M. and Dorn, R.I. (2017) Coatings on rocks and minerals: The interface between the lithosphere and the biosphere, hydrosphere, and atmosphere. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 13(3), 155-158. 

  26. Sparling, G.P. and West, A.W. (1989) Importance of soil water content when estimating soil microbial C, N and P by the fumigation-extraction methods. Soil Biology and Biochemistry, 21(2), 245-253. 

  27. Templeton, A.S., Knowles, E.J., Eldridge, D.L., Arey, B.W., Dohnalkova, A.C., Webb, S.M., Bailey, B.E., Tebo, B.M., and Staudigel, H. (2009) A seafloor microbial biome hosted within incipient ferromanganese crusts. Nature Geoscience, 2(12), 872-876. 

  28. Tivey, M.K. (2007) Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography, 20(1), 50-65. 

  29. Trail, D., Tailby, N.D., Sochko, M., and Ackerson, M.R. (2015) Possible biosphere-lithosphere interactions preserved in igneous zircon and implications for Hadean earth. Astrobiology, 15(7), 575-586. 

  30. Wang, X., Schroder, H.C., SchloBmacher, U., and Muller, W.E. (2009a) Organized bacterial assemblies in manganese nodules: evidence for a role of S-layers in metal deposition. Geo-Marine Letters, 29(2), 85-91. 

  31. Wang, X.H., SchloBmacher, U., Natalio, F., Schroder, H.C., Wolf, S.E., Tremel, W., and Muller, W.E. (2009b) Evidence for biogenic processes during formation of ferromanganese crusts from the Pacific Ocean: Implications of biologically induced mineralization. Micron, 40(5-6), 526-535. 

  32. Yang, K. and Kim, J. (2016) Electron Energy Loss Spectroscopy (EELS) application to mineral formation. Journal of the Mineralogical Society of Korea, 29(2), 73-78. 

  33. Yang, K., Park, H., Son, S.K., Baik, H., Park, K., Kim, J., Yoon, J., Park, C., and Kim, J. (2019) Electron microscopy study on the formation of ferromanganese crusts, western Pacific Magellan Seamounts. Marine Geology, 410, 32-41. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로