$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 주요 오염물질로 오염된 지하수에서 미생물의 무배양식 군집분석방법과 미생물상에 대한 조사방법 연구
Culture-Independent Methods of Microbial Community Structure Analysis and Microbial Diversity in Contaminated Groundwater with Major Pollutants 원문보기

지하수토양환경 = Journal of soil and groundwater environment, v.11 no.3, 2006년, pp.66 - 77  

김재수 (이화여자대학교 환경학과)

초록
AI-Helper 아이콘AI-Helper

최근에 적용된 지하수 미생물의 군집구조를 밝히는 분자생물학적 및 생화학적 방법들에 대해서 알아보았고 그 결과로서 지하수의 주요 오염물질에 따른 활성화된 미생물군집들이 무엇인지를 밝힌 연구논문들을 종합하여 정리하였다. PCR에 의한 유전자 증폭기술의 발달로 배양 없이 미생물 종류와 개체군을 파악할 수 있게 되었고 각종 finger-printing 방법 (DGGE, SSCP, RISA, microarray) 과 지방산분석법 (PLFA/FAME)을 이용하여 활성화 된 미생물군집구조를 분석하였으며 FISH 등의 방법으로 특정균의 활성도를 알아본 사례들을 조사하였다. 대표적인 지하수오염물질인 유류성분 (n-alkanes, BTEX, MTBE, ethanol)과 염소계 용매 (TCE, PCE, PCB, CE, carbon tetrachloride, chloro-benzene) 등으로 오염되었을 때 우점하는 지하수 미생물상에 대해 보고된 내용을 포함하였다.

Abstract AI-Helper 아이콘AI-Helper

This review inquired the recently applied molecular biological and biochemical methods analyzing the microbial community structure of groundwater and, as a result, summarized the functional or taxonomic groups of active microorganisms with major contaminants in groundwater. The development of gene a...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구의 목표는 다양한 지하수환경에 서식하는 미생 물의 생태적 분석을 위한 최근의 분자생물학적 또는 생화 학적 기법들을 소개하며 각 기법들의 장단점을 제시하고 오염물질별 주요 서식 미생물들을 소개함으로 이 분야에 관심 있는 연구자들에게 도움을 주는 것이다.
본문요약 정보가 도움이 되었나요?

참고문헌 (88)

  1. Amann, R.I., Ludwig, W., and Schleifer, K.-H., 1995, Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol. Rev., 59, 143-169 

  2. Anderson, R.T. and Lovley, D.R., 1997, Ecology and biogeochemistry of in situ groundwater bioremediation, Adv. Microb. Ecol., 15,289-350 

  3. Aulenta, F., Rossetti, S., Majone, M., and Tandoi, V., 2004, Detection and quantitative estimation of Dehalococcoieds spp. in a dechlorinating bioreactor by a combination of fluorescent in situ hybridization (FISH) and kinetic analysis, Appl. Microbiol. Biotechnol., 64, 206-212 

  4. Beeman, R.E. and Bleckmann, C.A., 2002, Sequential anaerobic-aerobic treatment of an aquifer contaminated by halogenated organics: field results, J. Contam. Hydrol., 57, 147-159 

  5. Bekins, B.A., Cozzarelli, I.M., Godsy, E.M., Warren, E., Essaid, H.I., and Tuccillo, M.E., 2001, Progression of natural attenuation processes at a crude oil spill site: II. Controls on spatial distribution of microbial populations, J. Contam. Hydrol., 53, 387-406 

  6. Boschker, H.T.S., de Graaf, W., Koster, M., Meyer-Reil, L.-A., and Cappenberg, T.E., 2001. Bacterial populations and processes involved in acetate and propionate consumption in anoxic brackish sediment. FEMS Microbiol. Ecol., 35, 97-103 

  7. Boschker, H.T.S., Nold, S.C., Wellsbury, P., Bos, D., de Graaf, W., Pel, R., Parkes, R.J., and Cappenberg, T.E., 1998, Direct linking of microbial populations to speci'c biogeochemical processes by $^13C$ -labeling of biomarkers, Nature, 392, 801-805 

  8. Bossio, D.A. and Scow, K.M., 1998, Impacts of carbon arid flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol., 35, 265-278 

  9. Cavalca, L., Della Amico, E., and Andreoni, V., 2004, Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monoxygenase genes, Appl. Microbiol. Biotechnol., 64, 576-587 

  10. Cavigelli, M.A., Robertson, G.P., and Klug, M.J., 1995, Fatty acid methyl ester (FAME) profiles as measures of soil microbial community structure, Plant Soil, 170, 99-113 

  11. Christensen, T.H., Kjeldsen, P., Bjerg, P.L., Jensen, D.L., Christensen, J.B., Baun, A., Albrechtsen, H.-J., and Heron. G., 2001, Biochemistry of landfill leachate plumes, Appl. Geochem., 16, 695-718 

  12. Church, C.D., Tratnyek, P.J., Pankow, J.F., Landmeyer, J.E., Baehr, A.L., Thomas, M.A., and Schirmer, M., 1999, Effects of environmental conditions on MTBE degradation in model column aquifers, Proceedings of the Technical Meeting of the USGS Toxic Substances Hydrology Program, Vol. 3, Charleston, SC, p. 93-101 

  13. Corseuil, H.X., Hunt, C.S., Ferreira dos Santos, R.C., and Alvarez, P.J.J., 1998, The influence of the gasoline oxygenate ethanol on aerobic and anaerobic BTX biodegradtion. Water Res., 33, 2065-2072 

  14. Cozzarelli, I.M., Bekins, B.A., Baedecker, M.J., Aiken, G.R., Eganhouse, R.P., and Tuccillo, M.E., 2001, Progression of natural attenuation processes at a crude-oil spill site: I. Geochemical evolution of the plume, J. Contam. Hydrol., 53, 369-385 

  15. Da Silva, M.L.B. and Alvarez, P.J.J., 2002, Effects of ethanol versus MTBE on benzene, toluene, ethylbenzene, and xylene natural attenuation in aquifer columns, J. Environ. Eng., 128(9), 862-867 

  16. Deeb, R.A., Hu, H.-Y., Hanson, J.S., Scow, K.M., and Alvarez-Cohen, L., 2001, Substrate interactions in BTEX and MTBE mixtures by an MTBE-degrading isolate, Environ. Sci. Technol., 35, 312-317 

  17. Devlin, J.F., Katie, D., and Barker, J.F., 2004, In situ sequenced bioremediation of mixed contaminants in groundwater, J. Contam. Hydrol., 69, 233-261 

  18. Duba, A.G., Jackson, K.J., Jovanovich, M.C., Knapp, R.B., and Taylor, R.T., 1996, TCE remediation using in situ, resting-state bioaugrnentation, Environ. Sci. Technol., 30, 1982-1989 

  19. Dybas, M.J., Hyndman, D.W., Heine, R., Tiedje, J., Linning, K., Wiggert, D., Voice, T., Zhao, X., Dybas, L., and Criddle, C.S., 2002, Development, operation, and long-term performance of a full-scale biocurtain utilizing bioaugmentation, Environ. Sci. Technol., 36, 3635-3644 

  20. Dybas, M.J., Barcelona, M., Bezborodnikov, S., Davies, S., Forney, L., Heuer, H., Kawka, O., Mayotte, T., Sepu'lveda-Torres, L., Smalla, K., Sneathen, M., Tiedje, J., Voice, T., Wiggert, D.C., Witt, D.C., and Criddle, C.S., 1998, Pilot-scale evaluation of bioaugmentation for in-situ remediation of carbon tetrachloridecontaminated aquifer, Environ. Sci. Technol., 32, 3598-3611 

  21. Eriksson, S., Ankner, T., Abrahamsson K., and Hallbeck. L., 2005, Propylphenols are metabolites in the anaerobic biodegradation of propylbenzene under iron-reducing conditions, Bioremediation, 16, 253-263 

  22. Essaid, H.I., Cozzarelli, I.M., Eganhouse, R.P., Herkelrath, W.N., Bekins, B.A., and Delin, G.N., 2003, Inverse modeling of BTEX dissolution and biodegradation at the Bemidji, MN crude-oil spill site, J. Contam. Hydrol., 67, 269-299 

  23. Eyers, L., George, I., Schuler, L., Stenuit, B., Agathos, S.N., and Fantroussi, S.E., 2004, Environmental genomics: exploring the unmined richness of microbes to degrade xenobiotics, Appl. Microbiol. Biotechnol., 66, 123-130 

  24. Fang, J., and Barcelona, M.J., 1998, Biogeochemical evidence for microbial community change in a jet fuel hydrocarbon contaminated aquifer, Org. Geochem., 29, 899-907 

  25. Felske A. and Akkermans A.D.L., 1998, Spatial homogeneity of abundant bacterial 16S rRNA molecules in Grassland soils, Microb. Ecol., 36, 31-36 

  26. Feris, K.P., Hristova, K., Grebreyesus, B., Mackay, D., and Scow, K.M., 2004, A shallow BTEX and MTBE contaminated aquifer supports a diverse microbial community, Microb. Ecol., 48, 589-600 

  27. Glucksman, A.M., Skipper, H.D., Brigmon, R.L., and Domingo, J.W., 2000, Use of the MIDI-FAME technique to characterize groundwater communities, J. Appl. Microbiol., 88(4), 711-719 

  28. Haack, S.K., Fogarty, L.R., West, T.G., AIm, E.W., McGuire, J.T., Long, D.T., Hyndman, D.W., and Forney, L.J., 2004, Spatial and temporal changes in microbial community structure associated with rechargeinfluenced chemical gradients in a contaminated aquifer, Environ. Microbiol., 6, 438-448 

  29. Hadrys, H., Balick, M., and Schierwater, B., 1992, Applications of random amplified polymorphic DNA (RAPD) in molecular ecology, Mol. Ecol., 1, 55-63 

  30. Hubbard, C.E., Barker, J.P., O'Hannesin, S.F., Vandegriendt, M., and Gillham, R., 1994, Transport and fate of dissolved methanol, ethyltertiary-butyl-ether, and monoaromatic hydrocarbons in a shallow sand aquifer, American Petroleum Institute, Health & Environmental Sciences Department, Washington, DC, p.226 

  31. Hunt, C.S., dos Santos Ferreira, R., Corseuil, H.X, and Alvarez, P.J.J., 1997, Effect of ethanol on aerobic BTX degradation, In Situ and On-site Bioremediation, Leeson A.L., and Alleman, B.C., (eds.), Battelle, Columbus, OH, p. 49-54 

  32. Hunkeler, D., Hohener, P., and Zeyer, J., 2002, Engineered and subsequent intrinsic in situ bioremediation of a diesel fuel contaminated aquifer, J. Contam. Hydrol. 59, 231-245 

  33. Huys, G., Kersters, I., Vancanneyt, M., Coopman, R., Janssen, P., and Kersters, K., 1995, Diversity of Aeromonas sp. in Flemish drinking water production plants as determined by gas-liquid chromatographic analysis of cellular fatty acid methyl esters (FAMEs), J. Appl. Bacteriol., 78(4), 445-455 

  34. Ibekwe, A.M. and Fennedy, A.C., 1988, Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions, FEMS Microbial. Ecol., 26, 151-163 

  35. Junca, H. and Pieper, D.H., 2004, Functional gene diversity analysis in BTEX contaminated soils by means of PCR-SSCP DNA fingerprinting: comparative diversity assessment against bacterial isolates and PCR-DNA clone libraries, Environ. Microbiol., 6, 95-110 

  36. Kikuchi, T., Iwasaki, K., Nishihara, H., Takamura, Y., and Yagi, O.,2002, Quantitative and rapid detection of the trichloroethylenedegrading bacterium Methylocystis sp. M in groundwater by real-time PCR, Appl. Microbiol. Biotechnol., 59, 731-736 

  37. Kleikemper, J., Schroth, M.H., Sigler, W.V., Schmucki, M., Bernasconi, S.M., and Zeyer, J., 2002, Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer, Appl. Environ. Microbiol., 68, 1516-1523 

  38. Klein, A., and Schnorr. M., 1984, Genome complexity of methanogenic bacteria, J. Bacteriol., 158(2), 628-631 

  39. Knittel, K., Boetius, A., Eilers, A.L.H., Lochte, K., and Linke. O.P.P., 2003, Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon), Geomicrobiol. J., 20, 269-294 

  40. Koenigsberg, S., Sandefur, C., Mahaffey, W., Deshusses, M., and Fortin, N., 1999, Peroxygen mediated bioremediation of MTBE, In Situ Bioremediation of Petroleum Hydrocarbon and OtherOrganic Compounds, Vol. 3, Alleman, B.C., and Leeson, A., (eds.), Battelle Press, Columbus, OH, p. 3-18 

  41. LaMontagne, M.G., Davenport, G.J., Hou, L.-H., and Dutta, S.K., 1998, Identification and analysis of PCB dechlorinating anaerobic enrichments by amplification: accuracy of community structure based on restriction analysis and partial sequencing of 16S rRNA genes, J. Appl. Microbiol., 84, 1156-1162 

  42. Langworthy, D.E., Stapleton, R.D., Sayler, G.S., and Findlay, R.H., 1998, Genotypic and phenotypic responses of a riverine microbial community to polycyclic aromatic hydrocarbon contamination, Appl. Environ. Microbiol., 64, 3422-3428 

  43. Lee, S. and Furhman, J.A., 1990, DNA hybridization to compare species composition of natural bacterioplankton assemblages, Appl. Environ. Microbiol., 56, 739-746 

  44. Lendvay, J.M., Loffier, F.E., Dollhopf, M., Aiello, M.R., Daniels, G., Fathepure, B.Z., Gebhard, M., Heine, R., Helton, R., and Shi, J., et al., 2003, Bioreactive barriers: a comparison of bioaugmentation and biostimulation for chlorinated solvent remediation, Environ. Sci. Technol., 37, 1422-1431 

  45. Lovely, D.R., 1993, Dissimilatory metal reduction, Ann. Rev. Microbiol., 47, 263-290 

  46. MacNaughton, S.J., Stephen, J.R., Venosa, A.D., Davis, G.A., Chang, Y.-J., and White, D.C., 1999, Microbial population changes during bioremediation of an experimental oil spill, Appl. Environ. Microbiol., 65, 3566-3574 

  47. MacNaughton, S.J., Stephen, J.R., Venosa, A.D., Davis, G.A., Chang, Y.J., and White, D.C., 1999, Microbial population changes during bioremediation of an experimental oil spill, Appl. Environ. Microbiol., 65, 3566-3574 

  48. Madigan, M.T., Martinko, J.M., and Parker, J., Brock Biology of Microorganisms, Prentice Hall, Upper Saddle River, NJ (2000) 

  49. Major, D.W., McMaster, M.L., Cox, E.E., Edwards, E.A., Dworatzek, S.M., Hendrickson, E.R., Starr, M.G., Payne, J.A., and Buonamici, L.W. 2002, Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene, Environ. Sci. Technol., 36, 5106-5116 

  50. Manefield, M., Whiteley, A.S., Griffiths, R.I., and Bailey, M.J., 2002, RNA stable isotope probing, a novel means of linking microbial community function to Phylogeny, Appl. Environ. Microbiol., 68, 5367-5373 

  51. Marsh, T.L., 1999, Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products, Curr. Opin. Microbiol., 2, 323-327 

  52. Miller, G.S., Milliken, C.E., and Sowers, K.S., 2005, Reductive dechlorination of tetrachloroethene to trans-dichloroethene and cis-dichloroethene by PCB-dechlorinating bacterium DF-l, Environ. Scie. Technol., 30, 2631-2635 

  53. Mormile, M.R., Liu, S., and Suflita, J.M., 1994, Anaerobic biodegradation of gasoline oxygenate: Extrapolation of information to multiple sites and redox conditions, Environ. Sci. Technol., 28, 1727-1732 

  54. Muyzer, G., De Waal, E.C., and Uitterlinden, A.G., 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA, Appl. Environ Microbiol. 59, 695-700 

  55. Nealson, K.H. and Saffarini. D., 1994, Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation, Ann. Rev. Microbiol., 48, 311-343 

  56. Peacock, A.D., Chang, Y.J., Istok, J.D., Krumholz, L., Geyer, R., Kinsall, B., Watson, D., Sublette, K.L., and White, D.C., 2004, Utilization of microbial biofilms as monitors of bioremediation, Microb. Ecol., 47, 284-292 

  57. Pelz, O., Tesar, M., Wittich, R.-M., Moore, E.R.B., Timmis, K.N., and Abraham, W.-R., 1999, Towards elucidation of microoial community metabolic pathways: unraveling the network of carbon sharing in a pollutant-degrading bacterial consortium by mmunocapture and isotopic ratio mass spectrometry, Environ. Microbiol., 1, 167-174 

  58. Pfiffuer, S., Palumbo, A., Gibson, T., Ringelberg, D., and McCarthy, J., 1997, Relating ground water and sediment chemistry to microbial characterization at a BTEX-contaminated site, Appl. Biochem. Biotechnol., 63, 775-788 

  59. Philippot, L., 2005, Tracking nitrate reducers and denitrifiers in the environment, Biochem. Soc. Trans., 33(1), 200-204 

  60. Powers, S.E., Rice D., Dooher, B., and Alvarez, P.J.J., 2001, Will ethanol-blended gasoline affect groundwater quality? Using ethanol instead of MTBE as a asoline oxygenate could be less harmful to the environment, Environ. Sci. Technol., 35, 24A-30A 

  61. Purohit, H.J., Raje, D.Y., Kapley, A., Padmanabhan, P., and Singh, R.N., 2003, Genomics tools in environmental impact assessment, Environ. Sci. Technol., 37, 356A-363A 

  62. Radajewski, S., Ineson, P., Parekh, N.R., and Murrell, J.C., 2000, Stable-isotope probing as a tool in microbial ecology, Nature, 403, 646-649 

  63. Ramsburg, C.A., Abriola, L.M., Pennell, K.D., Loffler, F.E., Gamache, M., Amos, B.K., and Petrovskis, E.A., 2004, Stimulated microbial reductive dechlorination following surfactant treatment at the Bachman road site, Environ. Sci. Technol., 38, 5902-5914 

  64. Ranjard, L., Poly, F., and Nazaret. S., 2000, Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment, Res. Microbiol., 151, 167-177 

  65. Rhee, S.K., Liu, X.D., Wu, L.Y., Chong, S.C., Wan, X.F., and Zhou, J.Z., 2004, Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50mer oligonucleotide microarrays, Appl. Environ. Microbiol., 70, 4303-4317 

  66. Rling, W.F.M., Van Breukelen, B.M., Braster, M., and Van Verseveld. H.W., 2000, Linking microbial community structure to pollution: Biolog-substrate utilization in and near a landfill leachate plume, Water Sci. Technol., 41, 47-53 

  67. Roling, W.F.M., van Breukelen, B.M., Braster, M., Lin, B., and van Verseveld, H.W., 2001, Relationships between microbial community structure and hydrochemistry in a landfill leachatepolluted aquifer, Appl. Environ. Microbiol., 67, 4619-4629 

  68. Rooney-Varga, J.N., Anderson, R.T., Fraga, J.L., Ringelberg, D.B., and Lovley, D.R., 1999, Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer, Appl. Environ. Microbiol., 65, 3056-3063 

  69. Ruiz-Aguilar, G.M.L, Fernandez-Sanchez, J.M., Kane, S.R, Kim, D., and Alvarez, P.J., 2002, Effect of ethanol and methyltert-butyl ether on monoaromatic hydrocarbon biodegradation: response variability for different aquifer materials under various electron-accepting conditions, Environ. Toxicol. Chem., 21, 2631-2639 

  70. Salanitro, J.P., and Wisniewski, H.L., 1996, Observations on the Biodegradation and Bioremediation Potential of Methyl t-Butyl Ether, Proceedings of the 17th Annual Meeting of the Society of Environmental Toxicology and Chemistry, Washington, DC 

  71. Schmidt, L.M., Delfino, J,J., Preston, J.F. 3rd, and St Laurent, G. 3rd, 1999, Biodegradation of low aqueous concentration pentachlorophenol (PCP) contaminated groundwater, Chemosphere, 38(12), 2897-912 

  72. Sedran, M.A., Pruden, A., Wilson, G.J., Suidan, M.T., and Venosa, A.D., 2002, Effect of BTEX on degradation of MTBE and TBA by mixed bacterial consortium, J. Environ. Eng., 128(9), 830-835 

  73. Shi, Y., Zwolinski, M.D., Schreiber, M.E., Bahr, J.M., Sewell, G.W., and Hickey, W.J., 1999, Molecular analysis of microbial community structures in pristine and contaminated aquifers: field and laboratory microcosm experiments, Appl. Environ. Microbiol., 65, 2143-2150 

  74. Smidt, H., and de Vos, W.M., 2004, Anaerobic microbial dehalogenation, Annu. Rev. Microbiol., 58, 43-73 

  75. Smith, A.E., Hristova, K., Wood, I., Mackay, D.M., Lory, E., Lorenzana, D., and Scow, K.M., 2005, Comparison of biostimulation versus bioaugmentation with bacterial strain PMl for treatment of groundwater contaminated with bethyl tertiary butyl ether (MTBE), Environ. Health Perspect., 113, 1-9 

  76. Spence, M.J., Bottrell, S.H., Thornton, S.F., Richnow, H.H., and Spence, K.H., 2005, Hydrochemical and isotopic effects associated with petroleum fuel biodegradtion pathways in a chalk aquifer, J. Contam. Hydrol., 79, 67-88 

  77. Stephen, J.R., Chang, Y.-J., Gan, Y.D., Peacock, A., Pfiffner, S.M., Barcelona, M.J., White, D.C., and MacNaughton, S.J., 1999, Microbial characterization of a JP-4 fuel-contaminated site using a combined lipid biomarker/polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)-based approach, Environ. Microbiol., 1, 231-241 

  78. Suflita, J.M., and Mormile, M.R., 1993, The anaerobic biodegradation of known and potential gasoline oxygenates in the terrestrial subsurface, Environ. Sci. Technol., 27, 976-978 

  79. Sunnucks, P. and Wilson, A.C.C., Zenger, L.B.K., French, J., and Taylor, A.C., 2000, SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism In evolutionary biology and molecular ecology, Mol. Ecol., 9, 1699-1710 

  80. Townsend, G.T., Prince, R.C., and Suflita, J.M., 2003, Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer, Environ. Sci. Technol., 37, 5213-5218 

  81. Von Keitz, V., Schramm, A., Altendorf, K., and Lipski, A., 1999, Characterization of microbial communities of biofilters by phospholipid fatty acid analysis and rRNA targeted oligonucleotide probes, Syst. Appl. Microbiol., 22, 626-634 

  82. Warren, E.B.B., Godsy, E., and Smith, V., 2004, Inhibition of acetoclastic methanogenesis in crude oil- and creosote-contaminated groundwater, Bioremediation J., 8, 1-11 

  83. Wenderoth, D.F., Rosenbrock, P., Abraham, W.-R., Pieper, D.H., and Hofle, M.G., 2003, Bacterial community dynamics during biostimulation and bioaugmentation experiments aiming at chlorobenzene degradation in groundwater, Microb. Ecol., 46, 161-176 

  84. White, D.C., Flemming, C.A., Leung, K.T., and MacNaughton, S.J., 1998, In situmicrobial ecology for quantitative appraisal, monitoring, and risk assessment of pollution remediation in soils, the subsurface, the rhizosphere and in biofilms, J. Microbiol. Methods, 32, 93-105 

  85. Widdel, F., and Hansen, T.A., 1991, The dissimilatory sulfateand sulfur-reducing bacteria, The Prokaryotes, 2nd edition, vol. I, Balows, A., Trper, H.G., Dworkin, M., Harder, W., and Schleifer, K.-H. (eds.), Springer-Verlag, New York. p. 583-624 

  86. Wilson, R.D., MacKay, D.M., and Scow, K.M., 2002, In situ MTBE biodegradation supported by diffusive oxygen release, Environ. Sci. Technol., 36, 190-199 

  87. Yeh, C.K. and Novak, J.T., 1994, Anaerobic biodegradation of gasoline oxygenates in soils, Water Environ Res., 66, 744-752 

  88. Zang, H., Logan, B.E., Regan, J.M., Achenbach, L.A., and Bruns, M.A., 2005, Molecular assessment of inoculated and indigenous bacteria in biofilms from a pilot-scale perchloratereducing bioreactor, Microb. Ecol., 49, 388-398 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로