$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

논문 상세정보

수조에서 입자 매질의 평면파 반사계수 측정과 Biot 이론에 의한 예측

Measurement of the Plane Wave Reflection Coefficient for the Saturated Granular Medium in the Water Tank and Comparison to Predictions by the Biot Theory

초록

평면파 반사 계수는 수중에서의 음파에너지에 관한 해저 바닥의 모든 정보를 담고 있고 음향 해석 모델의 입력 값으로도 사용할 수 있는 음향학적 물리량이다. 본 연구에서는 실험실 수조 환경에서 입자 매질 ( 세 종류의 유리구슬, 모래 )의 평면파 반사 계수, 음속 및 감쇠계수를 측정했다. 반사 실험은 수조의 한계를 고려해 $28{\sim}53^{\circ}$의 입사각과 중심 주파수 100kHz의 협대역 신호를 이용해 수행했다. 자기 교정법 (Self-calibration method)을 이용해 측정된 자료로부터 반사 계수를 계산했고 측정된 반사 계수의 경향 및 실험의 불확실성을 서술했다. 입자 매질의 음속 및 감쇠계수는 거리 수신 신호간의 회귀분석을 통해 계산했다. Biot 이론을 이용해 측정된 음속과 감쇠계수로부터 다공율과 침투율을 추정하고 실제 지질학적 측정값과의 유사성을 확인했다. 최종적으로 추정된 다공율, 침투율을 이용해 이론적 인 반사 계수를 계산하고 반사 실험의 측정값과 비교했다. 본 실험 결과는 Biot 이론으로 일관성 있게 입자 매질의 음향학적 물성을 설명할 수 있음을 입증한다.

Abstract

The plane wave reflection coefficient is an acoustic property containing all the information concerning the ocean bottom and can be used as an input parameter to various acoustic propagation models. In this paper, we measure the plane wave reflection coefficient, the sound speed, thd the attenuation for saturated granular medium in the water tank. Three kinds of glass beads and natural sand are used as the granular medium. The reflection experiment is performed with the sinusoidal tone bursts of 100 kHz at incident angles from 28 to 53 degrees, and the sound speed and attenuation experiment are performed also with the same signal. From the measured reflection signal, the reflection coefficient is calculated with the self calibration method and the experimental uncertainties are discussed. The sound speed and the attenuation measurements are used for the estimation of the porosity and permeability, the main Biot parameters. The estimated values are compared to the directly measured values and used as input values to the Biot theory in order to calculate the theoretical reflection coefficient. Finally, the reflection coefficient predicted by Biot theory is compared to the measured reflection coefficient and their characteristics are discussed.

저자의 다른 논문

참고문헌 (29)

  1. 1. R. D. Stoll, Sediment scoustios (Springer-Verlag, NY, 1989) 
  2. 2. H. Medwin and C. S. Clay, Fundamentals of acoustical oceanography (Academic Press, Boston, 1998) 
  3. 3. C. Park, W. Seong, and P. Gerstoft, 'Geoacoustic inversion in time domain using ship of opportunity noise recorded on a horizontal towered array,' J. Acoust. Soc. Am. 117 (4), 1933-1941, 2005 
  4. 4. C. W. Holland and J. Osler, 'High-resolution geoacoustic inversion in shallow water: A joint time- and frequencydomain technique,' J. Acoust. Soc. Am. 107 (3), 1263-1279, 2000 
  5. 5. M. Isakson et al., 'Acoustic reflection and transmission experiments from 4.5 to 50 kHz at the sediment acoustics experiment 2004 (SAX04),' in Proc. Underwater acoustic measurements: technologies and results, 2005 
  6. 6. H. P. Bucker, 'Sound propagation in a channel with lossy boundary,' J. Acoust. Soc. Am. 48 (3), 1187-1194, 1970 
  7. 7. K. Lee and W. Seong, 'Hybrid depth solver for the wavenumber integration technique in an ocean with a porous bottom,' (in preparation) 
  8. 8. C. H. Harrison and P. L. Nielsen, 'Plane wave reflection coefficient from near field measurements,' J. Acoust. Soc. Am. 116 (3),1355-1361,2004 
  9. 9. K. Ohkawa at al., 'Acoustic backscattering from a sandy seabed,' IEEE J. Oceanic Eng. 30 (4), 700-708, 2005 
  10. 10. P. D. Mourad and D. R. Jackson, 'High frequency sonar equation models for bottom backscatter and forward loss: in Proc. Ocean' 89, 1168-1175, 1989 
  11. 11. F. B. Jenson et al., Computational ocean acoustics (AIP, New York, 1994) 
  12. 12. C. W. Holland, J. Dettmer, and S. E. Dosso, 'A technique for measuring In-situ corrpressional wave speed dispersion in merine sediments,' IEEE J. Oceanic Eng. 30 (4), 748- 768, 2005 
  13. 13. M. A. Biot, 'Theory of propagation of elastic waves in a fluid-saturated porous solid,' J. Acoust. Soc. Am. 28 (1), 168-191, 1956 
  14. 14. 이근화, 성우제, '지질 음향 자료의 수중 음전달 모델링 적용', 한국음향학학회 수중음향학 학술발표회논문집. 87-90. 2002 
  15. 15. N. P. Chotiros, 'An inversion for Biot parameters in water-saturated sand,' J. Acoust. Soc. Am. 112 (5), 1853-1868, 2002 
  16. 16. K. L. Williams et al., 'Comparison of sound speed and attenuation measured in a sandy sediment to predictions based on the Biot theory of porous media: IEEE J. Oceanic Eng. 27 (3), 413-428, 2002 
  17. 17. R. D. Costley and A. Bedford, 'An experimental study of acoustic waves in saturated glass beads,' J. Acoust. Soc. Am. 83 (6), 2165-2174, 1988 
  18. 18. N. P. Chotiros, 'Normal incidence reflection loss from a sandy sediment: J. Acoust. Soc. Am. 112 (5), 1831-1841, 2002 
  19. 19. M J. Buckingham and M D. Richardson, 'On tone-burst measurements of sound speed and attenuation in sandy rrarine sediments,' IEEE J. Oceanic Eng. 27 (3), 429-453, 2002 
  20. 20. C. W. Holland, 'Seabed reflection measurement uncertainty: J. Acoust. Soc. Am. 114 (4), 1861-1873, 2003 
  21. 21. L. M. Brekhovskikh, Waves in layered media (Academic Press, New York, 1980) 
  22. 22. E. K. Westwood, 'Complex ray methods for acoustic interaction at a fluid-fluid interface', J. Acoust. Soc. Am. 85 (5), 1872-1884, 1989 
  23. 23. 이근화, 하용훈, 성우제 '모형 도파관에서 수중음향 실험의 설계와 측정', 한국음향학회 춘계학술발표대회 논문집, 79-82, (2005) 
  24. 24. A. Turgut and T. Yamamoto, 'Measurements of acoustic wave velocities and attenuation in marine sediments,' J. Acoust. Soc. Am. 87 (6), 2376-2383, 1990 
  25. 25. D. L. Johnson, J. Koolik, and R. Dashen, 'Theory of dynamic permeability and tortuosity in fluid-saturated porous media,' J. Fluid Mech. 176 (1), 379-402, 1987 
  26. 26. M. D. Richardson et al., 'Dynamic measurement of sediment grain compressibility at atmospheric pressure : acoustic applications: IEEE J. Oceanic Eng. 27 (3), 593-601, 2002 
  27. 27. K. L. Williams, 'An effective density fluid model for acoustic propagation in sediments derived from Biot theory: J. Acoust. Soc. Am. 110 (5), 2276-2281, 2001 
  28. 28. E. L. Hamilton. 'Geoacoustic modeling of the sea floor,' J. Acoust. Soc. Am. 68 (5), 1313-1340, 1980 
  29. 29. K. Lee and W. Seong, 'A simplified pseudo-fluid model derived from Biot theory through low grazing angle approximation,' IEEE J. Oceanic Eng. 27 (3), 651-659, 2005 

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

  • 원문 URL 링크 정보가 존재하지 않습니다.

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

DOI 인용 스타일

"" 핵심어 질의응답