$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

도심지 터널 암반분류를 위한 선형배열 상시진동 탄성파 탐사 적용
Application of linear-array microtremor surveys for rock mass classification in urban tunnel design 원문보기

물리탐사 = Geophysical exploration, v.9 no.1, 2006년, pp.108 - 113  

차영호 (지하정보기술(주)) ,  강종석 (지하정보기술(주)) ,  조철현 (지하정보기술(주))

초록
AI-Helper 아이콘AI-Helper

일반적인 물리탐사기법은 도심지 내에서 구조물, 전도성 지하매설물, 차량 등 인공 잡음으로 인하여 그 적용성에 많은 제약을 받는다. 특히 이 과업은 철도가 운행 중인 철로 하부의 지반 정보의 획득을 목적으로 하는데, 이를 위한 일반적인 물리탐사 적용이 어려웠으며 그 대안으로 선형배열 상시진동 탄성파탐사를 적용하였다. 상시진동 탐사(mircotremor survey)기법에는 철로를 운행하는 기차와 주변 도로의 차량에 의한 진동이 오히려 양호한 송신원으로 활용 될 수 있다. 선형배열 상시진동 탐사기법에서는 일반적인 굴절법 장비를 이용하여 일상적인 진동을 기록하고, 파동장의 변환을 수행하여 표면파의 분산곡선을 얻는다. 이후 발췌한 분산곡선에 대한 반복적인 수치모델링을 통하여 전단파 속도를 구한다. 이 과업에서는 기존 철로를 따라 하부의 터널심도까지의 전단파 속도를 전체 터널구간에 대하여 얻기 위하여 40 m 간격으로 선형배열을 이동하면서 자료를 획득하였다. 측선상의 시추를 통하여 회수한 코어를 이용한 실내시험을 통한 RMR 의 구성요소 중 하나인 일축압축강도와 전단파 속도와의 높은 상관관계를 확인하여 RMR이 전단파 속도와 연관성이 있음을 유추할 수 있었다. 시추공에서 수행한 SPS 검층에서 획득한 전단파 속도와 RMR의 비교한 결과 전단파 속도와 RMR이 높은 상관관계에 있음을 확인할 수 있었다. 상시진동 탐사기법을 통하여 획득한 전단파 속도 역시 RMR과의 양호한 상관관계를 나타냄을 알 수 있었다. 이러한 상관관계를 이용하여 도심지 철도터널 전체 구간에서 터널 설계시 필수적인 암반분류를 위한 RMR 추정이 가능하였다.

Abstract AI-Helper 아이콘AI-Helper

Urban conditions, such as existing underground facilities and ambient noise due to cultural activity, restrict the general application of conventional geophysical techniques. At a tunnelling site in an urban area along an existing railroad, we used the refraction microtremor (REMI) technique (Louie,...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • First, we checked the relationship between shear-wave velocity and uniaxial compressive rock strength in laboratory tests. Then, we deduced the relationship between shear-wave velocity from Suspension-PS (SPS) logging and the RMR in the same borehole.
  • In this paper, the relationship between shear-wave velocity and RMR is studied, using laboratory tests and borehole logging. From these results, it can be seen that shear-wave velocity and RMR are closely related.
  • SPS logging data were available at five boreholes, and we compared the RMR at each borehole with P-wave and S-wave velocity from SPS logging. Figure 4 shows the linear relationships between them.
  • 7 km long. The main objective of our project was to determine basic information that would assist in designing the tunnel, by conducting geophysical surveys.
  • The correlations between shear velocity from SPS logging and RMR or compressive strength were found to be good. Therefore, a relationship between shear velocity from REMI and RMR was inferred and it then became possible to estimate the RMR of the total zone of interest for the design of the proposed tunnel.
  • been applied. To generate quantitative information such as Rock Mass Rating (RMR), statistical relationships were derived by inspection of the RMR values of the cores recovered and the shear-wave velocities from both laboratory tests and SPS logging. The correlations between shear velocity from SPS logging and RMR or compressive strength were found to be good.

대상 데이터

  • As mentioned above, the new railway will lie beneath the existing railway located in Busan City. Figure 1(a) shows the route of the new railway through the city.
  • The next stage is the construction of a new railway for KTX from Taegu to Busan. The new railway is planned to run beneath the existing railway in Busan City (the second largest city in Korea) along a tunnel about 50 m deep and 5.7 km long. The main objective of our project was to determine basic information that would assist in designing the tunnel, by conducting geophysical surveys.

이론/모형

  • , 2004) in our case because the site is spatially restricted (Figure 1(b) and Figure 1(c)). Therefore, we decided to apply the REMI technique, which uses microtremors recorded with a linear array (Louie, 2001). At this project site, abundant microtremors were generated by vehicles on the roads parallel or perpendicular to the route, and by the train on the existing railway that is parallel to the route of the new railway.
본문요약 정보가 도움이 되었나요?

참고문헌 (15)

  1. AId, L., 1957, Space and time spectra of stationary stochastic waves, with special reference to microtremors: Bulletin of the Earthquake Research Institute, 35, 415-456 

  2. Bieniawski, Z.T., 1976, Rock mass classification in rock engineering applications: Proceedings of a Symposium on Exploration for Rock Engineering, Balkema, 12,97-106 

  3. Batzle, M., Hofmann, R.B., Han, D.-H., and Castagna, J., 2001, Fluid and frequency dependent seismic velocity of rocks: The Leading Edge, 20,168-171 

  4. Hayashi, K., Inazaki, T., and Suzuki, H., 2004, Buried channel delineation using a passive surface wave method: Proceeding of the 7'h SEGJ International Symposium, 395-400 

  5. Louie, J. N., 2001, Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays: Bulletin of the Seismological Society of America, 91,347-364 

  6. Louie, J.N., Abbott, R.E., and Pullammanappallil, S., 2002, Refraction microtremor and optimization methods as alternatives to boreholes for site strength and earthquake hazard assessments: Proceedings of 15th Annual Symposium on the Application of Geophysics to Environmental and Engineering Problems (SAGEEP '02), Environmental & Engineering Geophysical Society, 12GAP8 

  7. Okada, H., 2003, The microtremor survey method: Society of Exploration Geophysicists 

  8. Park, C.B., Miller, R.D., and Xia, J., 1999, Multi-channel analysis of surface waves: Geophysics, 64, 800-808 

  9. Pullammanappallil, S., Honjas, B., and Louie J., 2003, Determination of 1-0 shear wave velocities using the refraction microtremor method: Proceedings of the third international conference on the application of geophysical methodologies and NDT to transportation and infrastructure 

  10. Roberts, J., and Asten, M., 2004, Resolving a velocity inversion at the geotechnical scale using the microtremor (passive seismic) survey method: Exploration Geophysics, 35, 14-18 

  11. Roberts, J., and Asten, M., 2005, Estimating the shear velocity profile of Quaternary silts using microtremor array (SPAC) measurements: Exploration Geophysics, 35,34-40 

  12. Rucker, M.L., 2003, Applying the refraction microtremor (ReMi) shear wave technique to geotechnical characterization: Proceedings of the third international conference on the application of geophysical methodologies and NDT to transportation and infrastructure 

  13. Saito, M., 1979, Computations of reflectivity and surface wave dispersion curves for layered media; I, Sound wave and SH wave: Butsuri- Tanka, 32, 5-26 

  14. Saito, M., 1988, Compound matrix method for the calculation of spheroidal oscillation of the Earth: Seismological Research Letters, 59, 29 

  15. Thorson, J.R., and Claerbout, J.F., 1985, Velocity-stack and slant-stack stochastic inversion: Geophysics, 50, 2727-2741 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로