$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

한국의 전기비저항탐사

Electrical Resistivity Methods in Korea

초록

비록 2차 세계대전 이전에 자연전위가 관측되었다는 기록도 있기는 하지만, 한국에서 대전 이후 서서히 발전하던 전기탐사가 본격적으로 보급된 것은 1980년대 이후의 일이다. 다른 선진국과 달리 한국의 경우 전기비저항법을 환경문제보다 토목 건설 문제에 상대적으로 더 많이 적용하고 있다. 다른 모든 기술분야와 마찬가지로 반도체산업의 발전은 자료 수집과 잡음 감쇄처리에서 혁신을 가져왔으며, 지난 25년 동안 전기비저항 자료의 수집, 처리 및 해석에 있어서 두드러진 발전이 있었다. 평활화제약 모델에 의한 2차원 전기비저항 역산의 개발은 지난 40년 동안 물리탐사 자료해석에서 가장 현저한 변화 중 하나이며, 지금은 겉보기비저항 자료에 일반적으로 적용되고 있다. 전기비저항 분포를 가단면도가 아니라 단면도로 나타낼 수 있게 된 것은 자료해석에 혁신을 가져왔다. 일반적인 전자기 문제에서는 감도 계산을 위해 대단히 많은 전진 모델링을 필요로 하지만, 전기비저항법에서는 전류원과 수신점이 같은 위치를 차지하기 때문에 계산효율이 높아서 이전에는 처리하기 어려웠던 3차원 역산도 이제는 가능해졌다.

Abstract

Although application of electrical methods in Korea began with observation of self potentials before World War II, the methods were developed slowly by the beginning of 1980's when a major burst of development activity took place. DC resistivity methods are applied in Korea more to geotechnical problems rather than to environmental ones unlike other developed countries. As with every other branch of technology, the evolving speed of the silicon chip and of streaming data to hard disk has revolutionized data collection and noise reduction processing. The last two decades saw major advances in data collection, processing, and interpretation of electrical data. Development of smooth-model two-dimensional (2D) resistivity inversion is one of the most visible changes to geophysical interpretation of the last 40 years and is now routinely applied to apparent resistivity data. The ability to represent resistivities in section rather than pseudosection view has revolutionized interpretation. Although calculation of sensitivities for general electromagnetic problems require numerous forward modelings, DC resistivity methods can enjoy computational efficiencies if sources and receivers occupy the same position, and previously intractable 3D inversion is now becoming available.

저자의 다른 논문

참고문헌 (66)

  1. 서정희, 양정아, 최지향, 한누리, 남정미, 임보성, 조호범 (2006) 물리탐사 논문 동향 분석 및 데이터베이스 작성 한국지질자원연구원 위탁과제 보고서 (과제번호 400-20060010), 서울대학교 공학연구소 
  2. 이명종, 현병구, 김정호 (1995) 시추공간 전기비저항 탐사 자료의 영상화. 한국자원공학회지, 32권 p. 87-96 
  3. 조인기, 김정호, 정승환 (1997b) 전기비저항 토모그래피에 서의 공내수 영향. 한국자원공학회지, 34권, p. 531538 
  4. 편집실 (1998a) 전기비저항 탐사(I) 물리탐사, 1권 p. 140-143 
  5. Dey, A. and Morrison, H.F. (1979b) Resistivity modeling for arbitrarily shaped three-dimensional bodies. Geophysics, v. 44, p. 753-780 
  6. Haber, E. and Oldenburg, D.W. (2000) A GCV based method for nonlinear ill-posed problems. Comput. Geosci., v. 4, p. 41-63 
  7. Hohmann, G.W. (1975) Three-dimensional induced polarization and electromagnetic modeling. Geophysics, v. 40, p. 309-324 
  8. Lowry, T, Alien, M.B. and Shive, P.N. (1989) Singularity removal: A refinement of resistivity modeling techniques. Geophysics, v. 54, p. 766-774 
  9. Sasaki, Y. (1992) Resolution of resistivity tomography inferred from numerical simulation. Geophys. Prosp., v. 40, p. 453-463 
  10. Sasaki, Y. (1999) 3-D inversion of electrical and electromagnetic data on PCs: Proc. 3-D EM, p. 128-131 
  11. SEG of Japan (1998) Electrical methods. In: Handbook of Geophysical Exploration, Vol. Techniques, p. 239-295. (in Japanese) 
  12. Snyder, D.D. (1976) A method for modeling the resistivity and JP response of two-dimensional bodies. Geophysics, v. 41, p. 997-1015 
  13. Steeples, D.W. (2001) Engineering and environmental geophysics at the millennium. Geophysics, v. 66, p. 31-35 
  14. Tikhonov, A.N. and Arsenin, V.Y. (1977) Solutions to Ill-Posed Problems. John Wiley and Sons, Inc 
  15. Tripp, A.C., Hohmann, G.W. and Swift, C.M. (1984) Twodimensional resistivity inversion. Geophysics, v. 49, p. 1708-1717 
  16. Ward, S.H. (ed.) (1990a) Geotechnical and Environmental Geophysics. Vol. 2: Geotechnical, and Vol. 3: Environmental and Groundwater. Soc. Expl., Geophys 
  17. Yi, M.-J., Kim, J.-H., Song, Y., Cho, S.-J., Chung, S. and Suh, J.-H. (2001) Three-dimensional imaging of subsurface structures using resistivity data. Geophys. Prosp., v. 49, p. 483-497 
  18. Oristaglio, M. and Spies, B. (eds.) (1999) Three-Dimensional Electromagnetics. Soc. Expl. Geophys., 709p 
  19. Pridmore, D., Hohmann, G.W., Ward, S.H. and Sill, W.R (1981) An investigation of finite element modeling for electrical and electromagnetic data in three dimensions. Geophysics, v. 46, p. 1009-1024 
  20. Ward, S.H. (1980) Electrical, electromagnetic, and magnetotelluric methods. Geophysics, v. 45, p. 1659-1666 
  21. Park, S.K and Van, G.P. (1991) Inversion of pole-pole data for 3-D resistivity structure beneath arrays of electrodes. Geophysics, v. 56, p. 951-960 
  22. Parker, R.L. (1980) The inverse problem of electromagnetic induction: existence and construction of solutions based upon incomplete data. J. Geophys. Res., v. 85, p. 4421-4425 
  23. Pain, C.C., Herwanger, J.V., Worthington, M.H. and de Oliveira, C.R.E. (2002) Effective multidimensional resistivity inversion using finite-element techniques. Geophys. J. Int., v. 151, p. 710-728 
  24. Ward, S.H. (1990b) Resistivity and induced polarization methods. In Ward, S.H. (ed.) Geotechnical and Environmental Geophysics, Vol. 1. Soc. Expl., Geophys., p. 147-189 
  25. Ghosh, D.P. (1971) The application of linear filter theory to the direct interpretation of geoelectrical resistivity sounding measurements. Geophys. Prosp., v. 19, p.192-217 
  26. Pelton, W.H., Rijo, L. and Swift, C.M., Jr. (1978) Inversion of two-dimensional resistivity and induced-polarization data. Geophysics, v. 43, p. 788-803 
  27. Sasaki, Y. (1981) Automatic interpretation of resistivity sounding data over two-dimensional structure (I). Butsuri-Tanko, v. 34, p. 341-350. (in Japanese) 
  28. Wu, X., Xiao, Y., Qi, C. and Wang, T. (2003) Computations of secondary potential for 3D DC resistivity modeling using an incomplete Cholesky conjugate-gradient method. Geophys. Prosp., v. 51, p. 567-577 
  29. Zhao, S. and Yedlin, M.J. (1996) Some refinements on the finite-difference method for 3-d dc resistivity modeling. Geophysics, v. 61, p. 1301-1307 
  30. 이명종, 김정호, 정승환, 서정희 (2002) 전기비저항 토모그 래피에 의한 지하구조의 3차원 영상화. 물리탐사, 5권 p.236-249 
  31. 편집실 (1998b) 전기비저항 탐사 (II) , 물리탐사, 1권, p. 188-195 
  32. Inman, J.R, Ryu, J. and Ward, S.H. (1973) Resistivity inversion. Geophysics, v. 38, p. 1088-1108 
  33. Daily, W. and Owen, E. (1991) Cross-borehole resistivity tomography. Geophysics, v. 56, p. 1228-1235 
  34. Wu, X. (2003) A 3-D finite-element algorithm for DC resistivity modeling using the shifted incomplete Cholesky conjugate gradient method. Geophys.J. Int., v. 154, p. 974-956 
  35. Lines, L.R and Treitel, S. (1984) Tutorial: A review of least-squares inversion and its application to geophysical problems. Geophys. Prosp., v. 32, p. 159-186 
  36. Parker, R.L. (1994) Geophysical Inverse Theory. Princeton Univ. Press 
  37. 조인기, 정승환, 김정호, 송윤호 (1997a) 전기비저항 토모 그래피에서의 전극배열비교. 한국자원공학회지, 34권, p. 18-26 
  38. Petrick, W.R., Jr., Sill, W.R. and Ward, S.H. (1981) Threedimensional resistivity inversion using alpha centers. Geophysics, v. 46, p. 1148-1163 
  39. 김정호, 현병구, 정승환 (1989b) 쌍극자 배열 비저항탐사 자료의 2차원 지동역산. 대한광산학회지, 26권 p. 90-100 
  40. Coggon, J.H. (1971) Electromagnetic and electrical modeling by the finite element method. Geophysics, v. 36, p. 132-155 
  41. Corwin, R.E (1990) The self-potential method for environmental and engineering applications. In Ward, S.H. (ed.) Geotechnical and Environmental Geophysics, Vol. 1, Soc. Expl., Geophys., p. 127-145 
  42. Shirna, H. (1992) 2-D and 3-D resistivity imaging reconstruction using crosshole data. Geophysics, v. 57, p. 682-694 
  43. Gasperikova, E. and Morrison, H. F. (2001) Mapping of induced polarization using natural fields. Geophysics, v. 66, p. 137-147 
  44. Rucker, C., Gunther, T. and Spitzer, K. (2006) Threedimensional modeling and inversion of dc resistivity data incorporating topography ae I. Modeling. Geophys.J. Int., v. 166, p. 495-505 
  45. Smith, N.C. and Vozoff, K. (1984) Two-dimensional DC resistivity inversion for dipole-dipole data. IEEE Trans. Geosci. Remote Sensing, v. 22, p. 21-28 
  46. Tripp, A.C. (2005) Acheron's rainbow: Free associations on 75 years of exploration geo-electromagnetics. Geophysics, v. 70, p. 25ND-31ND 
  47. Uchida, T. (1993) Smooth 2-D inversion for magnetotelluric data based on statistical criterion ABIC. J. Geomag. Geoelectr., v. 45, p. 841-858 
  48. Constable, S.C., Parker, R.L. and Constable, C.G. (1987) A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, v. 52, p. 289-300 
  49. Dey, A. and Morrison, H.F. (1979a) Resistivity modelling for arbitrarily shaped two-dimensional structures. Geophys. Prosp., v. 27, p. 106-136 
  50. Kim, J-H., Yi, M.-J., Cho, S.-J. (2004) Application of highresolution geoelectric imaging techniques to geotechnical engineering in Korea, Proc. ISRM Internat. Symp. 3rd ARMS, Kyoto, Japan, p. 191-196 
  51. 김정호, 현병구, 정승환 (1989a) Reciprocity 원리를 이용 한 2차원 비저항 탐사자료의 효율적 역산. 대한광산학회지, 26권 p. 18-27 
  52. Peltoniemi, M. (2005) Impact factor, citations, and Geophysics. Geophysics, v. 70, p. 3MA-17MA 
  53. Sasaki, Y. (1994) 3-D resistivity inversion using the finite element method. Geophysics, v. 59, p. 1839-1848 
  54. Torres-Verdin, C., Druskin, Y.D., Fang, S., Knizhnerman, LA and Malinvemo, A. (2000) A dual-grid nonlinear inversion technique with applications to the interpretation of dc resistivity data. Geophysics, v. 65, p. 1733-1745 
  55. 이명종, 김정호, 조성준, 정승환, 송윤호 (1999) 전기비저항 자료의 3차원 역산. 물리탐사, 2권 p. 191-201 
  56. deGroot-Hedlin, C. and Constable, S. (1990) Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics, v. 55, p. 1613-1624 
  57. Lee, T (1975) An integral equation and its solution for some two and three-dimensional problems in resistivity and induced polarization. Geophys. J. R. astr. Soc., v. 42, p. 81-95 
  58. Loke, M.H. and Barker, R.D. (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys. Prosp., v. 44, p. 131152 
  59. Sasaki, Y. (1989) Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data. Geophysics, v. 54, p. 254-262 
  60. Steeples, D.W. (2005) Near-surface geophysics: 75 years of progress. Leading Edge, v. 24(S1), p. S82-S85 
  61. ElIis, R.G. and Oldenburg, D.W. (1994) The pole-pole 3D resistivity inverse problem: a conjugate-gradient approach. Geophys. J Int., v. 119, p. 187-194 
  62. Gunther, T, Rucker, C. and Spitzer, K. (2006) Threedimensional modeling and inversion of dc resistivity data incorporating topography ae II . Inversion. Geophys. J Int., v. 166, p. 506-517 
  63. Nabighian, M.N. and Macnae, J.C. (2005) Electrical and EM methods, 1980-2005. Leading Edge, v. 24(Sl), p. S42-S45 
  64. Kim, H.J. and Kim, Y. (1988) Two-dimesional inversion for dipole-dipole resistivity data. J. Korean Inst. Mining Geol., v. 21, p. 107-113 
  65. Rodi, W.L. (1976) A technique for improving the accuracy of finite element solutions for magnetotelluric data. Geophys. J. Roy. astr. Soc., v. 44, p. 483-506 
  66. Zhou, B. and Greenhalgh, S.A (2001) Finite element three-dimensional direct current modeling: accuracy and efficiency considerations. Geophys.J. Int., v. 145, p. 679-688 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일