$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

근권세균과 식물을 이용한 유류 오염 토양의 생물복원
Bioremediation of Oil-Contaminated Soil Using Rhizobacteria and Plants 원문보기

한국미생물·생명공학회지 = Korean journal of microbiology and biotechnology, v.34 no.3, 2006년, pp.185 - 195  

김지영 (이화여자대학교 환경공학과) ,  조경숙 (이화여자대학교 환경공학과)

초록
AI-Helper 아이콘AI-Helper

산업발달과 인구증가로 인하여 석유계 탄화수소의 사용량이 점차 증가함에 따라 많은 양의 석유계 탄화수소가 환경에 잔류하여 토양과 지하수에 심각한 오염을 야기시키고 있으며, 인체에도 피해를 주게 된다. 유류오염토양을 복원하는 방법 중 생물을 이용한 복원기술은 경제적이고 환경친화적인 기술로서, phytoremediation 방법은 유류오염물질을 분해할 수 있는 미생물과 토양 내의 미생물량을 증가시킬 수 있는 고등식물을 함께 이용함으로써 생물복원기술의 효율을 극대화할 수 있는 방법이다. 토양 내 유류오염물질은 중금속, polychlorinated biphenyl, trichloroethylene, perchloroethylene 등의 오염물질과 달리 식물에 의해 분해 될 수 있기 때문에 유류오염물질 정화효율이 높은 식물종을 선택하는 것이 무엇보다 중요하다. 본 연구에서는 phytoremediation 기법을 이용하여 유류오염토양을 정화하는 과정에서 식물과 근권 미생물을 역할을 밝히고, 이전에 보고된 연구결과를 바탕으로 유류오염토양복원에 효과적인 식물종과 근권미생물을 알아보았다. 토양 내의 유류오염물질은 식물과 근권 미생물에 의해 분해제거되는데, 식물과 근권 미생물은 유류오염물질을 직접 분해하기도 하며 서로의 분해작용을 촉진하는 간접적 역할을 하기도 한다. 유류오염 토양의 정화에 선호되는 식물종은 alfalfa, ryegrass, tall fescue, poplar, corn 등이었으며, 탄화수소를 분해할 수 있는 것으로 밝혀진 미생물종은 주로 Pseudomonas spp., Bacillus spp., Alcaligenes spp. 등이었다. Phytoremediation 방법을 통해 토양 내 유류오염물질의 정화효율을 높일 수 있다는 연구결과가 보고되고 있다. 따라서 phytoremediation 과정에서 식물과 근권 미생물의 역할과 상호작용을 정확히 이해한다면 보다 효과적인 토양복원을 기대할 수 있을 것이다.

Abstract AI-Helper 아이콘AI-Helper

Phytoremediation is an economical and environmentally friendly bioremediation technique using plants which can increase the microbial population in soil. Unlike other pollutants such as heavy metals, poly-chlorinated biphenyl, trichloroethylene, perchloroethylene and so on, petroleum hydrocarbons ar...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 제거된다. Phytoremediation 기작 중 유류오염물질의 분해에 관련된 기작인 phytoremediation과 phytostimulation(또는 rhizodegradation)에 대해서 살펴보았다.
  • 연구에서는 유류로 오염된 토양을 정화하는 데 있어서 phytoremediation 기작을 살펴보고, 이 과정에서 식물과 근권 미생물의 역할을 밝혀 phytoremediation 동안의 토양 내의 거동을 이해하고자 한다. 또한 이전에 보고된 연구결과를 바탕으로 유류오염토양 복원에 효과적인 식물종과 근권 미생물을 파악하고자 한다.
  • 토양 내 유류오염 물질은 중금속, polychlorinated biphenyl, trichloroethylene, perchloroethylene 등의 오염물질과 달리 식물에 의해 분해될 수 있기 때문에 유류오염물질 정화효율이 높은 식물 종을 선택하는 것이 무엇보다 중요하다. 연구에서는 phytoremediation 기법을 이용하여 유류오염토양을 정화하는 과정에서 식물과 근권 미생물을 역할을 밝히고, 이전에 보고된 연구결과를 바탕으로 유류오염토양복원에 효과적인 식물 종과 근권미생물을 알아보았다. 토양 내의 유류오염 물질은 식물과 근권 미생물에 의해 분해제거되는데, 식물과 근권 미생물은 유류오염물질을 직접 분해하기도 하며 서로의 분해작용을 촉진하는 간접적 역할을 하기도 한다.
  • 또한 유류로 오염된 토양이 정화되는 과정에서 유류오염물질을 분해하는 토착 미생물의 역할에 대한 연구가 많이 수행되어 왔으며 미생물의 오염물질 생분해 활성이 bioremediation 과정에서 매우 결정적인 역할을 하는 것으로 알려져 있다[100]. 연구에서는 유류로 오염된 토양을 정화하는 데 있어서 phytoremediation 기작을 살펴보고, 이 과정에서 식물과 근권 미생물의 역할을 밝혀 phytoremediation 동안의 토양 내의 거동을 이해하고자 한다. 또한 이전에 보고된 연구결과를 바탕으로 유류오염토양 복원에 효과적인 식물종과 근권 미생물을 파악하고자 한다.
  • 석유계 탄화수소로 오염된 토양의 정화에 근권 미생물을 이용한 phytoremediation을 적용한 연구사례를 살펴보았다. 우선 phytoremediation의 적용에 선호되는 식물종의 특성은 다음과 같다.
본문요약 정보가 도움이 되었나요?

참고문헌 (105)

  1. 김영웅, 2001. 유류오염 토양/지하수 환경복원 조사설계 사례. J. Kor. Geoenviron. Soc. 2: 10-19 

  2. 박용하, 1995. 토양환경보전을 위한 오염방지기준 및 관리대책. 한국환경기술개발원 

  3. 윤상희, 2005. 2004년 특정토양오염유발시설 설치 및 관리현황 보고. 환경부 

  4. 최병순,국승욱,김진한,이동훈,박철희, 2001.토양오염 처리 기술. 토양오염개론. 동화기술. p. 237-244 

  5. Al-Ghazawi, Z., I. Saadoun, and A. Al-Shak'ah. 2005. Selection of bacteria and plant seeds for potential use in the remediation of diesel contaminated soils. J. Basic Microbiol. 45: 251-256 

  6. Al-Sharidah, A., A. Richardt, J. R. Golecki, R. Dierstein, and M. H. Tadros. 2000. Isolation and characterization of two hydrocarbon-degrading Bacillus subtilis strains from oil contaminated soil of Kuwait. Microbiol Res. 155: 157-164 

  7. Andreoni, V., L. Cavalca, M. A. Rao, G. Nocerino, S. Bernasconi, E. Dell'Amico, M. Colombo, and L. Gianfreda. 2004. Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere 57: 401-412 

  8. Aprill, W. and R. C. Sims. 1990. Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere 20: 253-265 

  9. ATSDR. 1999. Public health statement for total petroleum hydrocarbons (TPH) 

  10. Banks, M. K., P. Kulakow, A. P. Schwab, Z. Chen, and K. Rathbone. 2003. Degradation of crude oil in the rhizosphere of sorghum bicolor. Int. J. Phytoremediation 5: 225-234 

  11. Barac, T., S. Taghavi, B. Borremans, A. Provoost, L. Oeyen, J. V. Colpaert, J. Vangronsveld, and D. van der Lelie. 2004. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat. Biotechnol. 22: 583-588 

  12. Baudoin, E., E. Benizri, and A. Guckert. 2003. Inpact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol. Biochem. 35: 1183-1192 

  13. Bento, F. M., F. A. O. Camargo, B. C. Okeke, and W. T. Frankenberger. 2005. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour. Technol. 96: 1049-1055 

  14. Bollag, J. M., T. Mertz, and L. Otjen. 1994. Role of microorganisms in soil bioremediation. p. 2-10. In T. A Anderson and. J. R. Coats (ed.), Bioremediation Through Rhizosphere Technology. vol. 563, American Chemical Society: Washington, D.C. ACS Symposium Series, U.S.A 

  15. Chang, J. H., S. K. Rhee, Y. K. Chang, and H. N. Chang. 1998. Desulfurization of diesel oils by a newly isolated dibenzothiophene-degrading Nocardia sp. strain CYKS2. Biotechnol Prog. 14: 851-855 

  16. Chen, Y. C., M. K. Banks, and A. P. Schwab. 2003. Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass (Panicum virgatum L.). Environ. Sci. Technol. 37: 5778-5782 

  17. Chin-A-Woeng, T. F. C., G. V. Bloemberg, A. J. van der Bij, K. M. G. M. van der Drift, J. Schripsema, B. Kroon, R. J. Scheffer, C. Keel, P. A. H. M. Bakker, H. V. Tichy, F. J. de Bruijn, J. E. Thomas-Oates, and B. J. J. Lugtenberg. 1998. Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol. Plant Microbe Interact. 11: 1069-1077 

  18. Cohen, M. F., J. Williams, and H. Yamasaki. 2002. Biodegradation of diesel fuel by an Azolla-derived bacterial consortium. J. Environ. Sci. Health Part A Toxic-Hazard Subst. Environ. Eng. 37: 1593-1606 

  19. Committee on In Situ Bioremediation, Water Science and Technology Board, Commission on Engineering and Technical Systems, and National Research Council. 1993. In Situ Bioremediation : When Does It Work? National Academy Press, Washington, D.C., U.S.A 

  20. Cunningham, S. D., T. A. Anderson, A. P. Schwab, and F. C. Hsu. 1996. Phytoremediation of soils contaminated with organic pollutants. Adv. Agron. 56: 55-114 

  21. Dandie, C. E., S. M. Thomas, R. H. Bentham, and N. C. McClure. 2004. Physiological characterization of Mycobacterium sp. strain 1B isolated from a bacterial culture able to degrade high-molecular-weight polycyclic aromatic hydrocarbons. J. Appl. Microbiol. 97: 246-255 

  22. De Wever, H. and H. Verachtert. 1997. Biodegradation and toxicity of benzothiazoles. Wat. Res. 31: 2673-2684 

  23. Dore, S. Y., Q. E. Clancy, S. M. Rylee, and C. F. Kulpa, Jr. 2003. Naphthalene-utilizing and mercury-resistant bacteria isolated from an acidic environment. Appl. Microbiol. Biotechnol. 63: 194-199 

  24. Durmishidze, S. V. 1977. Metabolism of certain air-polluting organic compounds in plant (review). Appl. Biochem. Microbiol. 13: 646-653 

  25. Edwards, N. T., B. M. Ross-Todd, and E. G. Garver. 1982. Uptake and metabolism of 14C anthracene by soybean (Glycine max). Environ. Exp. Bot. 22: 349-357 

  26. Edwards, N. T. 1988. Assimilation and metabolism of polycyclic aromatic hydrocarbons by vegetation - An approach to this controversial issue and suggestions for future research, p. 211-229. In M. Cook and A.J. Dennis (eds.), Polycyclic aromatic hydrocarbons: A decade of progress. 10th Int. Symp. Battelle Press, Columbus, Ohio, U.S.A 

  27. Escalante-Espinosa, E., M. E. Gallegos-Martinez, E. Favela-Torre, and M. Gutierrez-Rojas. 2005. Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. Inoculated with a microbial consortium in a model system. Chemosphere 59: 405-413 

  28. Eweis, J. B., S. J. Ergas, D. P. Y. Chang, and E. D. Schroeder. 1998. Bioremediation principles. McGraq-Hill, Inc.: Toronto, Canada 

  29. Farrell, R. E., C. M. Frick, and J. J. Germida. 2000. A database of plants that play a role in the phytoremediation of petroleum hydrocarbons. p. 29-40. Proceedings of the Second Phytoremediation Technical Seminar, Environment Canada, Ottawa, Canada 

  30. Frick, C. M., R. E. Farrell, and J. J. Germida. 1999. Assessment of phytoremediation as an In-Situ technique for cleaning oil-contaminated sites. Petroleum Technology Alliance of Canada, Calgary, Canada 

  31. Gunther, T., U. Domberger, and W. Fritsche. 1996. Effects of ryegrass on biodegradation of hydrocarbons in soil. Chemosphere 33: 203-215 

  32. Hamnann, C., J. Hegemann, and A. Hildebrandt. 1999. Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Microbiol. Lett. 173: 255-263 

  33. Hegde, R. S. and J. S. Fletcher. 1997. Influence of plant growth stage and season on the release of root phenolics by mulberry as related to development of phytoremediation technology. Chemosphere 32: 2471-2479 

  34. Huang, X. D., Y. El-Alawi, J. Gurska, B. R. Glick, and B. M. A. Greenberg. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem. J. 81: 139-147 

  35. Hutchinson, S. L., A. P. Schwab, and M. K. Banks. 2003. Biodegradation of petroleum hydrocarbons in the rhizosphere. p. 355-386. In S. C. McCutcheon, and J. L. Schnoor (eds.), Transformation and Control of Contaminants, Wiley, New York, U.S A 

  36. Hynes, R. K., R. E. Farrell, and J. J. Germida. 2004. Plant-assisted degradation of phenanthrene as assessed by solid-phase microextraction (SPME). Int. J Phytoremediation 6: 253-268 

  37. Ilori, M. O. and D. I. Amund. 2000. Degradation of anthracene by bacteria isolated from oil polluted tropical soils. Z Naturforsch [C]. 55: 890-897 

  38. Jirausch, M., O. Asperger, and H. P. Kleber. 1986. Alcohol oxidation by Acinetobacter calcoaceticus EB 104-a n-alkane-utilizing and cytochrome P-450-producing strain. J. Basic Microbiol. 26: 351-357 

  39. Jordahl, J. L., L. Foster, J. L. Schnoor, and P. J. J. Alvarez. 1997. Effect of hybrid poplar trees on microbial populations important to hazardous waste bioremediation. Environ. Toxicol. Chem. 16: 1318-1321 

  40. Kaksonen, A. H., M. M. Jussila, K. Lindstrom, and L. Suominen. 2006. Rhizosphere effect of Galega orientalis in oil-contaminated soil. Soil Biol. Biochem. 38: 817-827 

  41. Kanaly, R. A., R. Bartha, K. Watanabe, and S. Harayama. 2000. Rapid mineralization of benzo[a]pyrene by a microbial consortium growing on diesel fuel. Appl. Environ. Microbiol. 66: 4205-4211 

  42. Karthikeyan, R., K. R. Mankin, L. C. Davis, and L. E. Erickson. 2003. Fate and transport of jet fuel (JP-8) in soils with selected plants. Int. J Phytoremediation 5: 281-292 

  43. Ke, L., W. Q. Wong, T. W. Wong, Y. S. Wong, and N. F. Tam. 2003. Removal of pyrene from contaminated sediments by mangrove microcosms. Chemosphere 51: 25-34 

  44. Khomiakova. D. V., I. V. Botvinko, and A. I. Netrusov. 2003. Isolation of hydrocarbon-oxidizing psychrophilic bacteria from oil-polluted soils. Prikl Biokhim Mikrobiol. 39: 661-664 

  45. King, J. M. H., P. M. DiGrazia, B. Applegate, F. Larimer, and G S. Sayler. 1990. Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249: 778-781 

  46. Kingsley, M. T., J. K. Fredrickson, F. B. Metting, and R. J. Seidler. 1994. Environmental restoration using plant-microbe bioaugmentation. p. 287-292 In R. E. Hinchee, A. Leeson, L. Semprini, and S. K. Ong (eds.), Bioremediatin of Chlorinated and Polyaromatic Hydrocarbon Compounds, Lewis Publishers, Boca Raton, FL, U.S.A 

  47. Kuiper, I., G. V. Bioemberg, and B. J. J. Lugtenberg. 2001. Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol. Plant Microbe Interact. 14: 1197-1205 

  48. Kuiper, I., E. L. Lagendijk, F. V. Bloemberg, and B. J. J. Lugtenberg. 2004. Rhizoremediation: A beneficial plant-microbe interaction (review). Mol. Plant Microbe Interact. 17: 6-15 

  49. Lalande, T. L., H. D. Skipper, D. C. Wolf, C. M. Reynolds, D. L. Freedman, B. W. Pinkerton, P. G. Hartel, and L. W. Grimes. 2003. Phytoremediation of pyrene in a cecil soil under field conditions. Int. J Phytoremediation 5: 1-12 

  50. Leigh, M. B., J. S. Fletcher, X. Fu, and F. J. Schmitz. 2000. Root turnover: an important source of microbial substances in rhizosphere remediation of recalcitrant contaminants. Environ. Sci. Technol. 36: 1579-1583 

  51. Lindstrom, J. E., R. C. Prince, J. C. Clark, M. J. Grossman, T. R. Yeager, J. F. Braddock, and E. J. Brown. 1991. Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez oil spill. Appl. Environ. Microbiol. 57: 2514-2522 

  52. Liste, H. J. and M. Alexander. 2000. Plant-promoted pyrene degradation in soil. Chemosphere 40: 7-10 

  53. Liste, H. H. and D. Felgentreu. 2006. Crop growth, culturable bacteria, and degradation of petrol hydrocarbons (PHCs) in a long-term contaminated field soil. Appl. Soil Ecol. 31: 43-52 

  54. Liste, H. H. and I. Prutz. 2006. Plant performance, dioxygenase-expressing rhizosphere bacteria, and biodegradation of seathered hydrocarbons in contaminated soil. Chemosphere 62: 1411-1420 

  55. Lugtenberg, B. J. J. and L. A. de Weger. 1992. Plant root colonization by Pseudomonas spp.. p. 13-19. In E. Galli, S. Silver, and B. Witholt (eds.), Pseudomonas: Molecular Biology and Biotechnology, des. Am. Soc. Microbiol., Washington, D.C., U.S.A 

  56. Lynch, J. M. and J. M. Whipps. 1990. Substrate flow in the rhizosphere. Plant Soil 129: 1-10 

  57. Macek, T., M. Mackova, and J. Kas. 2000. Exploitation of plants for the removal of organics in environmental remediation (research review paper). Biotechnol. Adv. 18: 23-34 

  58. McLean, L., J. Ireland, S. Hohn, and L. Herman. 1999. Preliminary report and design of using jack pines for the phytoremediation of diesel-contaminated soils in Northern Saskatchewan. p. 159-167. Proceedings of the Phytoremediation Technical Seminar, Calgary, Alberta. Ottawa, Canada 

  59. Mehmannavaz, R., S. O. Prasher, and D. Ahmad. 2002. Rhizospheric effects of alfalfa on biotransformation of polychlorinated biphenyls in a contaminated soil augmented with Sinorhizobium melioti. Process Biochem. 37: 955-963 

  60. Menezes Bento, F., F. A. de Oliveira Camargo, B. C. Okeke, and W. T. Frankenberger, Jr. 2005. Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol. Res. 160: 249-255 

  61. Merkl, N., R. Schultze-Kraft, andx M. Schultze-Kraf. 2005. Effect of the tropical grass Brachiaria brizantha (Hochst. Ex A. Rich.) Stapf on microbial population and activity in petroleum-contaminated soil. Microbiol. Res. 161: 80-91 

  62. Mikolasch, A., E. Hammer, and F. Schauer. 2003. Synthesis of Imidazol-2-yl Amino Acids by Using Cells from Alkane-Oxidizing Bacteria Appl. Environ. Microbiol. 69: 1670-1679 

  63. Monferran, M. V., J. R. Echenique, and D. A. Wunderlin. 2005. Degradation of chlorobenzenes by a strain of Acidovorax avenae isolated from a polluted aquifer. Chemosphere 61: 98-106 

  64. Morgan, P. and R. J. Watkinson. 1994. Biodegradation of components of petroleum. p. 1-31. In C. Ratledge (ed.) Biochemistry of Microbial Degradation, Kluwer Academic Publisher, Dordrecht, Netherlands 

  65. Muratova, A., T. Hubner, N. Narula, H. Wand, L. Turkovskaya, P. Kuschk, R. Jahn, and W. Merbach. 2003. Rhizosphere microflora of plants used for the phytoremediation of bitumen-contaminated soil. Microbiol. Res. 158: 151-161 

  66. Nichols, T. D., E. C. Wolf, H. B. Rogers, C. A. Beyrouty, and C. M. Beyrouty. 1997. Rhizosphere microbial populations in contaminated soils. Water Air Soil Pollut. 95: 165-178 

  67. Palmroth, M. R., J. Pichtel, and J. A. Puhakka. 2002. Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresour Technol. 84: 221-228 

  68. Palmroth, M. R., U. Munster, J. Pichtel, and J. A. Puhakka. 2005. Metaboilc responses of microbiota to diesel fuel addition in vegetated soil. Biodegradation. 16: 91-101 

  69. Pepi, M., A. Minacci, F. Di cello, F. Baldi, and R. Fani. 2003. Logn-term analysis of diesel fuel consumption in a co-culture of Acinetobacter venetianus, Pseudomonas putida and Alcaligenes faecalis. Antonie Van Leeuwenhoek. 83: 3-9 

  70. Pilon-Smits, E. 2005. Phytoremediation. Annu Rev Plant Biol. 56: 15-39 

  71. Plaza, G. A., K. Ulfig, and R. L. Brigmon. 2005. Surface active properties of bacterial strains isolated from petroleum hydrocarbon-bioremediated soil. Pol. J. Microbiol. 54: 161-167 

  72. Pradhan, S. P., J. R. Conrad, J. R. Paterek, and V. J. Srivastava. 1998. Potential of phytoremediation for treatment of PAHs in soil at MGP sites. J Soil Contam. 7: 467-480 

  73. Radwan, S. S., H. Al-Awadhi, N. A. Sorkhoh, and I. M. El-Nemr. 1998. Rhizospheric hydrocarbon-utilizing microorganisms as potential contributors to phytoremediation for the oily Kuwaiti desert. Microbiol. Res. 153: 247-251 

  74. Radwan, S., N. Dashti, and I. El-Nemr. 2005. Engancing the growth of Vicia faba plants by microbial inoculation to improve their phytoremediation potential for oily desert area. Int. J. Phytoremediation. 7: 19-32 

  75. Rahman, K. S., T. Rahman, P. Lakshmanaperumalsamy, and I. M. Banat. 2002. Occurrence of crude oil degrading bacteria in gasoline and diesel station soils. J. Basic Microbiol. 42: 284-291 

  76. Reilley, K. A., M. K. Banks, and A. P. Schwab. 1996. Organic chemicals in the environment: dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J. Environ. Qual. 25: 212-219 

  77. Rentz, A. J., B. Chapman, P. J. J. Alvarez, and J. L. Schnoor. 2003. Stimulation of hybrid poplar grwth in petroleum contaminated soils through oxygen addition and soil nutrient amendments. Int J Phytoremediation 5: 57-72 

  78. Rentz, J. A., P. J. J. Alvarez, and J. L. Schnoor. 2005. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation. Environ. Pollut. 136: 477-484 

  79. Reynold, C. M. and D. C. Wolf. 1999. Microbial based strategies for assessing rhizosphere-enhanced phytoremediation. p. 125-135. Proceedings of the Phytoremediation Technical Seminar, Calgary, Alberta, Ottawa, Canada 

  80. Rojas-Avelizapa, N. G, R. Rodriguez-Vazquez, J. Martinez-Cruz, F. Esparza-Garcia, A. Montes de Oca-Garcia, E. Rios-Leal, and G. Fernandez-Villagomez, 1999. Isolation and characterization of bacteria degrading polychlorinated biphenyls from transformer oil. Folia Microbiol (Praha). 44: 317-321 

  81. Ronchel, M. C. and J. L. Ramos. 2001. Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl. Environ. Microbiol. 67: 2649-2656 

  82. Ruberto, L., S. C. Vazquez, W. P. Mac Cormack. 2003. Effectiveness of the natural bacterial flora, biostimulation and bioqugmentation on the bioremediation of a hydrocarbon contaminated Actarctic soil. Int. Biodeterior. Biodeg. 52: 115-125 

  83. Schwab, A. P., M. K. Banks, and M. Arunachalam. 1995. Biodegradation of polycyclic aromatic hydrocarbons in rhizosphere soil. p. 23-29. In R.E. Hinchee, D.B. Anderson, and R.E. Hoeppel (eds.), Bioremediation of Recalcitrant Organics, Battelle Press, Columbus, U.S.A 

  84. Shao, Z. Z., Y. Xu, Y. F. Ma, and Q. Guo. 2004. Isolation and identification of two marine bacteria with hydrocarbon-biodegradation activity. Huan Jing Ke Xue. 25: 133-137 

  85. Shcherbakova. V, A., K. S. Laurinavichus, A. M. Lysenko, N. E. Suzina, and V. K. Akimenko. 2003. Methanogenic sarcina from an anaerobic microbial community degrading p-toluene sulfonate. Mikrobiologiia 72: 547-553 

  86. Shim, H., S. Chauhan, D. Ryoo, K. Bowers, S. M. Thomas, K. A. Canada, J. G. Burken, and T. K. Wood. 2000. Rhozosphere competitiveness of trichloroethylene-degrading, poplar-colonizing recombinant bacteria. Appl. Environ. Microbiol. 66: 4673-4678 

  87. Siciliano, S. D. and J. J. Germida. 1998. Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ. Rev. 6: 65-79 

  88. Siciliano, S. D., N. Fortin, A. Mihoc, G. Wisse, S. Labelle, K. Beaumier, D. Ouellette, R. Roy, L. G. Whyte, M. K. Banks, P. Schwab, K. Lee, and C. W. Greer. 2001. Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl. Environ. Microbiol. 67:2469-2475 

  89. Singer, A. C., D. Smith, W. A. Jury, H. Khoiviet, and D. E. Crowley. 2003. Impact of the plant rhizosphere and augmentation on remediation of polychlorinated biphenyl contaminated soil. Environ. Toxicol. Chem. 22: 1998-2004 

  90. Smith, R. M. 1994. The Physiology of aromatic hydrocarbon degrading bacteria. p 365-367. In C. Ratledge (ed.), Biochemistry of Microbial Degradation, Kluwer Academic Publisher, Dordrecht. Netherlands 

  91. Sung, J., C. L. Munster, R. Rhykerd, M. C. Drew, and M. Y. Corapcioglu. 2003. The use of vegetation to remediate soil freshly contaminated recalcitrant contaminants. Wat. Res. 37: 2408-2418 

  92. Sutherland, J. B. 1992. Detoxification of polycyclic aromatic hydrocarbons by fungi. J. Ind Microbiol. 9: 53-62 

  93. Tesar, M., T. G. Reichenauer, and A. Sessitsch. 2002. Bacterial rhizosphere populations of black poplar and herbal plants to be used for phytoremediation of diesel fuel. Soil Biol. Biochem. 34: 1883-1892 

  94. Tischer, S. and T. Hubner. 2002. Model trials for phytoremediation of hydrocarbon-contaminated sites by the use of different plant species. Int. J. Phytoremediation 4: 187-203 

  95. Totevova, S., M. Prouza, J. Burkhard, K. Demnerova, and V. Brenner. 2002. Characterization of polychlorinated biphenyl-degrading bacteria isolated from contaminated sites in Czechia. Folia Microbiol (Praga). 47: 247-254 

  96. Ueno, A., M. Hasanuzzaman, I. Yumoto, and H. Okuyama. 2006. Verification of Degradation of n-Alkanes in Diesel Oil by Pseudomonas aeruginosa Strain WatG in Soil Microcosms. Curr. Microbiol. 52: 182-185 

  97. USEPA, 1999. Phytoremediation resource guide. EPA/52/B-99/0 

  98. USEPA, 2004. Abstracts of remediation case studies, Volume 8, EPA/542/R-04/012 

  99. Vervaeke, P., S. Luyssaert, J. Mertens, E. Meers, F. M. Tack, and B. Lust. 2003. Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environ Pollut. 126: 275-282 

  100. Vogel, T. M. 1996. Bioaugmentation as a soil bioremediation approach. Curr. Opin. Biotechnol. 7: 311-316 

  101. Vogt, C., D. Simon, A. Alfreider, and W. Babel. 2004. Microbial degradation of chlorobenzene under oxygen-limited conditions leads to accumulation of 3-chlorocatechol. Environ. Toxieol. Chem. 23: 265-270 

  102. Wild, S. R. and K. C. Jones. 1992. Polynuclear aromatic hydrocarbon uptake by carrot grown in sludge-amended soil. J. Environ. Qual. 21: 217-225 

  103. Wiltse, C. C., W. L. Rooney, Z. Chen, A. P. Schwab, and M. K. Banks. 1998. Greenhouse evaluation of agronomic and crude oil-phytoremediation potential among alfalfa genotypes. J. Environ. Qual. 27: 169-173 

  104. Wolfe, N. L. and C. F. Hoehamer. 2003. Enzymes used by plants and microorganisms to detoxify organic compounds, p. 159-187. In S. C. McCutcheon and J. L. Schnoor (eds.), Phytoremediation: Transformation and Control of Contaminants, Wiley, New York, U.S.A 

  105. Yoshitomi, K. J. and J. R. Shann. 2001. Com (Zea mays L.) root exudates and their impact on $^{14}C-pyrene$ mineralization. Soil Biol. Biochem. 33: 1769-1776 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로