$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

감자절간 기내배양에서 소괴경의 형성과 형태적 발달
Microtuberization and Morphological Development by Culture Condition In Vitro Node Culture of Potato 원문보기

Journal of plant biotechnology = 식물생명공학회지, v.34 no.4, 2007년, pp.331 - 338  

황혜연 (충남대학교 농업생명과학대학 원예학과) ,  이영복 (충남대학교 농업생명과학대학 원예학과)

초록
AI-Helper 아이콘AI-Helper

기내에서 배양되고 있는 감자 (Solanum tuberosum L.)로부터 액아와 완전히 전개된 잎이 부착된 약 1 cm 크기의 절간을 채취하였다. 절간의 잎은 제거한 후 온도, 일장, sucrose, CCC의 처리가 소괴경의 형성과 비대에 미치는 영향에 관하여 확인하기 위해 MS배지에서 배양을 하였다. 기내 소괴경의 형성에 있어 $20^{\circ}C$$28^{\circ}C$의 두 처리간에 있어 배양 80일 후에 형성된 괴경의 크기나 생체중 모두 $28^{\circ}C$에 비해 $20^{\circ}C$에서 유의성 있는 효과를 보였으며, 배지에 첨가되는 sucrose의 영향에 있어서도 농도에 따른 차이가 뚜렷하여 8% sucrose가 3% 보다 괴경의 비대 발육을 촉진하였다. 일장의 영향은 배지의 sucrose의 농도의 영향을 많이 받았다. $20^{\circ}C$에서는 sucrose가 8%일 때 일장에 관계없이 괴경의 형성이 양호하였지만 sucrose의 농도가 3%일 경우에는 일장과 관계없이 액아는 신초로 발달하였다. 그러나 $28^{\circ}C$의 고온에서는 8% sucrose와 8시간의 단일에서만 괴경의 비대에 효과가 있었다. CCC의 영향에 있어서 괴경의 구중은 sucrose 농도가 8%의 배지에서는 모든 일장에서 괴경의 형성이 양호하였으며 일장이 짧을 수록 효과는 더 양호하였다. 배양온도에 따른 감자의 액아부위 세포의 조직학적 변화에 있어서는 저온조건에서 괴경이 형성이 촉진되어 세포의 조직은 신장생장보다 비후생장을 함을 관찰할 수 있었다. 일장조건에 따른 변화에 있어서는 암조건에서 조직의 비후 생장이 뚜렷함을 관찰할 수 있었으며, CCC의 첨가 유무에 따른 변화에 있어서는 CCC를 첨가한 조건에서 양호한 현상을 관찰 할 수 있었다. 또한 조직의 변화에 있어서 배양한지 9일이 되었을 때 pith, cortex 및 perimedullary tissue에 있는 parenchyma 세포의 수와 크기가 증가된 것으로 확인할 수 있었다. 특히 조직내 위치별 세포분열의 가시적 비율에서는 pith부위 보다 cortex부위에서 세포비후의 비율이 큰 것으로 보였다. Sucrose, CCC 및 일장차이에 따른 AGPase 활성의 변화에 있어서 암처리에서는 sucrose 농도 3%보다 8%에서 양호하였고 sucrose 3%, 8%에서도 각각 CCC의 효과를 볼 수 있었다. 8시간 처리에서는 sucrose 농도 3%보다 8%에서 양호하였고 sucrose 3%, 8%에서는 CCC의 효과가 나타나지 않았다. 16시간 처리 sucrose 농도 3%보다는 8%에서 양호하였고 sucrose 3%에서는 CCC의 효과가 나타나지 않았으나 8%에서는 CCC의 효과를 볼 수 있었다. 결과적으로 sucrose의 농도가 높고, CCC와 암처리의 괴경형성의 촉진조건에서 AGPase의 활성이 양호함을 볼 때, AGPase가 starch 합성에 중요한 물질이라는 사실이 확인되었다.

Abstract AI-Helper 아이콘AI-Helper

One-node stem pieces ca. 1 cm in length containing a axillary bud and a fully expanded leaf were obtained from it in vitro plants of potato (Solanum tuberosum L.). Leaves were removed and the nodes were cultured on the MS medium to investigate the effects of temperature, day length, sucrose, and CCC...

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 형성방향을 검토하였다. 아울러 소괴경 형성과정에서의 세포조직을 관찰하고 체내 ADP-glucose pyrophosphorylase의 활성을 조사하여 기내배양을 위한 기초자료로 활용될 수 있도록 하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (25)

  1. Appeldoorn NJG, de Bruijn SM, Koot-Gronsveld EAM, Visser RGF, Vreugdenhil D, van der Plas LHW (1997) Developmental changes of enzymes involved in sucrose to hexose-phosphate conversion during early tuberization of potato. Planta 202: 220-226 

  2. Cenzano A, Vigliocco A, Kraus T, Abdala G (2003) Exogenously applied jasmonic acid induces changes in apical meristem morphology of potato stolons. Annals of Bot 91: 915-919 

  3. Dyson PW (1965) Effects of gibberellic acid and (2-chloroethyl)-trimethylammonium chloride on potato growth and development. J Sci Food Agric 16: 542-549 

  4. Ewing EE, Struik PC (1992) Tuber formation in potato: induction, initiation, and growth. Hort Rev 14: 89-98 

  5. Jackson SD (1999) Multiple signaling pathways control tuber induction in potato. Plant Physiol 119: 1-8 

  6. Koda Y, Okazawa Y (1988) Detection of potato tuberinducing activity in potato leaves and old tubers. Plant Cell Physiol 29: 969-974 

  7. Liu J, Xie C (2001) Correlation of cell division and cell expansion to potato microtuber growth in vitro. Plant Cell Tissue Organ Culture 67(2): 159-164 

  8. Menzel CM (1980) Tuberization in potato at high temperatures. Responses of gibberellin and growth inhibitors. Ann Bot 46: 259-265 

  9. Mingo-Castel AM, Smith OE, Kumamoto J (1976) Studies on the carbon dioxide promotion and ethylene inhibition of tuberization in potato explants cultured in vitro. Plant Physiol 57: 480-485 

  10. Muller-Rober B, Sonnewald U, Willmitzer L (1992) Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J 11: 1229-1238 

  11. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15: 473-497 

  12. 佐野 豊 (1972) 組織學硏究法. 南山堂. 東京. pp 143-206 

  13. Sergeeva LI, de Bruijn SM, Koot-Gronsveld EAM, Navratil O, Vreugdenhil D (2000) Tuber morphology and starch accumulation are independent phenomena: Evidence from ipt-transgenic potato lines. Physiol Plant 108: 435-443 

  14. Sharma N, Kaur N, Gupta AK (1998a) Effects of Gibberellic Acid and Chlorocholine Chloride on Tuberisation and Growth of Potato (Solanum tuberosum L). J Sci Food Agr 78: 466-470 

  15. Sharma N, Kaur N, Gupta AK (1998b) Effect of chlorocholine chloride sprays on the carbohydrate composition and activities of sucrose metabolising enzymes in potato (Solanum tuberosum L.). Plant Growth Reg 26(2): 97-103 

  16. Smith OE, Rappaport L (1969) Gibberellins, inhibitors and tuber fromation in the potato (Solanum tuberosum). Amer Potato J 46: 185-191 

  17. Thevenot C, Simond-Cote E, Reyss A, Manicacci D, Trouverie J, Le Guilloux M, Ginhoux V, Sidicina F, Prioul J-L (2005) QTLs for enzyme activities and soluble carbohydrates involved in starch accumulation during grain filling in maize. J Exp Bot 56(413): 945-958 

  18. Tiessen A, Hendriks JHM, Stitt M, Branscheid A, Gibon Y, Farre EM, Geigenberger P (2002) Starch Synthesis in Potato Tubers Is Regulated by Post-Translational Redox Modification of ADP-Glucose Pyrophosphorylase -A Novel Regulatory Mechanism Unking Starch Synthesis to the Sucrose Supply-. The Plant Cell 14: 2191-2213 

  19. Van den Berg JH, Ewing E, Plaisted RL, McMurry S, Bonierbale MW (1996) QTL analysis of potato tuberization. Theor Appl Genet 93: 307-316 

  20. Vreugdenhil D, Sergeeva LI (1999) Gibberellins and tuberization in potato. Potato Res 42: 471-481 

  21. Vreugdenhil D, Struik PC (1989) An integrated view of the hormonal regulation of tuber formation in potato (Solanum tuberosum). Physiol Plant 75: 525-531 

  22. Vreugdenhil D, Boogaard Y, Visser RGF, de Bruijn SM (1998) Comparison of tuber and shoot formation from in vitro cultured potato explants. Plant Cell Tissue Organ Culture 53(3): 197-204 

  23. Vreugdenhil D, Xu X, Jung JS, van Lammeren AAM, Ewing EE (1999) Initial anatomical changes associated with tuber formation on single-node potato (Solanum tuberosum L.) cuttings: a re-evaluation. Ann Bot 84: 675-680 

  24. Xu X, van Lammeren AAM, Vermeer E, Vreugdenhil D (1998a) The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol 117: 575-584 

  25. Xu X, Vreugdenhil D, van Lammeren AAM (1998b) Cell division and cell enlargement during potato tuber formation. J Exp Bot 320: 573-582 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로