최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기한국통계학회 논문집 = Communications of the Korean Statistical Society, v.14 no.3, 2007년, pp.507 - 516
Shim, Joo-Yong (Department of Applied Statistics, Catholic University of Daegu) , Hong, Dug-Hun (Department of Mathematics, Myongju University) , Kim, Dal-Ho (Department of Statistics, Kyungbuk National University) , Hwang, Chang-Ha (Division of Information and Computer Science, Dankook University)
Multinomial logistic regression is probably the most popular representative of probabilistic discriminative classifiers for multiclass classification problems. In this paper, a kernel variant of multinomial logistic regression is proposed by combining a Newton's method with a bound optimization appr...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
Blake, C. L. and Merz, C. J. (1998). UCI Repository of machine learning databases. University of California, Department of Information and Computer Science. Available from: http://www.ics.ucLedu/ mlearn/MLRepository.html
Bohning, D. (1992). Multinomial logistic regression algorithm. Annals of the Institute of Statistical Mathematics, 44, 197-200
Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numerische Mathematic, 31, 317-403
Kimeldorf, G. S. and Wahba, G. (1971). Some results on Tchebycheffian spline functions. Journal of Mathematical Analysis and its Applications, 33, 82-95
Krishnapuram, B., Carin, L., Figueiredo, M. A. T. and Hartemink, A. J. (2005). Sparse multinomiallogistic regression: fast algorithms and generalization bounds. IEEE Ttransaction on Pattern Analysis and Machine Intelligence, 27, 957-968
Mercer, J. (1909). Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society of London, 209, 415-446
Minka, T. (2003). A comparison of numerical optimizers for logistic regression. Technical Report, Department of Statistics, Carnegie Mellon University
Rifkin, R. and Klautau, A. (2004). In defense of one-vs-all classification. Journal of Machine Learning Research, 5, 101-141
Suykens, J. A. K. and Vandewalle, J. (1999). Multiclass least squares support vector machines, Proceeding of the International Joint Conference on Neural Networks, 900-903
Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer-Verlag, New York
Vapnik, V. N. (1998). Statistical Learning Theory. Springer-Verlag, New York
Wahba, G., Lin, Y., and Zhang, H. (1999). Generalized approximate cross validation for support vector machine, or, another way to look at margin-Like quantities. Technical Report No. 1006, University of Wisconsin
Weston, J. and Watkins, C. (1998). Multi-class SVM. Technical Report 98-04, Royal Holloway University of London
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.