$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effects of Olanzapine on Gene Expression Changes in MK-801-induced Neurotoxicity Using a High-density DNA Microarray 원문보기

Molecular & cellular toxicology, v.3 no.4, 2007년, pp.282 - 291  

Jo, Jae-Hoon (College of Pharmacy, Chungnam National University) ,  Kim, Seung-Jun (Genocheck Co. Ltd.) ,  Yeon, Jong-Pil (Genocheck Co. Ltd.) ,  Oh, Moon-Ju (Genocheck Co. Ltd.) ,  Seo, Hye-Myung (Division of Molecular & Life Sciences, Hanyang University) ,  Hwang, Seung-Yong (Genocheck Co. Ltd.) ,  Kim, Sang-Kyum (College of Pharmacy, Chungnam National University) ,  Kim, Bong-Hee (College of Pharmacy, Chungnam National University)

Abstract AI-Helper 아이콘AI-Helper

Although the etiology of schizophrenia is known to be linked with the disturbance of glutamatergic and dopaminergic neurotransmission, little is known about the relationship between gene expression and the disease process. To identify genes related to abnormalities in glutamatergic and dopaminergic ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Hybridized slides were scanned with the Axon Instruments GenePix 4000B scanner and the scanned images were analyzed with the software program GenePix Pro 5.1 (Axon, CA) and GeneSpring GX 7.3.1 (Sillicongenetics, CA). Spots that were judged as substandard by visual examination of each slide were flagged and excluded from further analysis.
  • Although there have been several studies of gene expression in brain with microarray, most of them have investigated gene expression change by only one compound, MK-801 or other antipsychotics25,32,33. In these studies, although several novel gene functions were revealed and confirmed the relationship in synaptic transmission, they used the microarray consisting small numbered genes or they showed the expression change of the selected gene. We have investigated the global gene expression change using high density microarray OpArray Rat genome 27K (OPRNV3, Operon Biotechnologies, GmbH).
  • Although a number of brain regions have been implicated in the pathophysiology of schizophrenia, the dorsal prefrontal cortex has been singled out as a major site of dysfunction on the basis of considerable clinical, neuroimaging, and postmortem studies and has thus been focused to recent microarray efforts25,28.In this study, we detected the change of the expression pattern after olanzapine treatment in the schizophrenia animal model to propose potential candidate molecules in therapeutics.
  • 1 software (Silicon Genetics, Redwood City, CA) for data mining. Signal intensity values for all experimental replicates on any given drug-treat were averaged and used for additional analysis. The starting data set represented 28,032 probe sets.
  • To confirm whether the psychomimetic rat model employed in this study are built or not properly, we performed a locomotive activity analysis using the Opto-Varimex-3 animal activity meter. We recorded the ambulatory counts and moving distance.

대상 데이터

  • Eight male Sprague Dawley rats with an average weight of 250 g were obtained from OrientBio, Sungnam, Korea and used for the experiment. These animals were housed in a temperature and humidity-controlled environment with a 12-h light/dark cycle and had access to food and water ad libitum.
  • A 384-well high-throughput analysis was performed by using the ABI Prism 7900 Sequence Detection System (PE Applied Biosystems) and white colored 384-well plates (ABgene, Hamburg, Germany) for intensification of the fluorescent signals by a factor of three. The system operates using a thermal cycler and a laser that is directed via fiber optics to each of 384 sample wells. The fluorescence emission from each sample is collected by a charge coupled device-camera and the quantitative data were analyzed using the Sequence Detection System software (SDS version 2.
본문요약 정보가 도움이 되었나요?

참고문헌 (50)

  1. Goff, D. C. & Coyle, J. T. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 158:1367-1377 (2001) 

  2. Coyle, J. T. & Tsai, G. NMDA receptor function, neuroplasticity, and the pathophysiology of schizophrenia. Int Rev Neurobiol 59:491-515 (2004) 

  3. McCullumsmith, R. E., Clinton, S. M. & Meador- Woodruff, J. H. Schizophrenia as a disorder of neuroplasticity. Int Rev Neurobiol 59:19-45 (2004) 

  4. Carlsson, A. et al. Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41:237-260 (2001) 

  5. Laruelle, M. et al. Mechanism of action of antipsychotic drugs: from dopamine D 2 receptor antagonism to glutamate NMDA facilitation. Clin Ther 27:s16-s24 (2005) 

  6. Javitt, D. C. Gultamate and schizophrenia: phencyclidine, N-methyl-D-Aspartate receptors, and dopamineglutamate interactions. Int Rev Neurobiol 78:69-108 (2007) 

  7. Ellison, G. The N-methyl-d-aspartate antagonists phencyclidine, ketamine and dizocilpine as both behavioral and anatomical models of the dementias. Brain Res Brain Res Rev 20:250-267 (1995) 

  8. Javitt, D. C. & Zukin, S. R. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiat 148:1301-1308 (1991) 

  9. Paulson, L. et al. Comparative proteome analysis of thalamus in MK-801-treated rats. Proteomics 4:819-825 (2004) 

  10. Marcotte, E. R., Pearson, D. M. & Srivastava, L. K. Animal models of schizophrenia: a critical review. J Psychiatry Neurosci 26:395-410 (2001) 

  11. Farber, N. B., Foster, J., Duhan, N. L. & Olney, J. W. Olanzapine and fluperlapine mimic clozapine in preventing MK-801 neurotoxicity. Schizophr Res 21:33-37 (1996) 

  12. Carlsson, M. & Svensson, A. Interfering with glutamatergic neurotransmission by means of NMDA antagonist administration discloses the locomotor stimulatory potential of other transmitter systems. Pharmacol Biochem Behav 36:45-50 (1990) 

  13. al-Amin, H. A. & Schwarzkopf, S. B. Effects of the PCP analog dizocilpine on sensory gating: potential relevance to clinical subtypes of schizophrenia. Biol Psychiatry 40:744-754 (1996) 

  14. Matsuoka, T. et al. NC-1900, an arginine-vasopressin analogue, ameliorates social behavior deficits and hyperlocomotion in MK-801-treated rats: Therapeutic implications for schizophrenia. Brain Research 1053: 131-136 (2005) 

  15. Wolf, M. E. & Khansa, M. R. Repeated administration of MK-801 produces sensitization to its own locomotor stimulant effects but blocks sensitization to amphetamine. Brain Res 562:164-168 (1991) 

  16. Sams-Dodd, F. Distinct effects of d-amphetamine and phencyclidine on the social behaviour of rats. Behav Pharmacol 6:55-65 (1995) 

  17. Li, Z., Kim, C. H., Ichikawa, J. & Meltzer, H. Y. Effect of repeated administration of phencyclidine on spatial performance in an eight arm radial maze with delay in rats and mice. Pharmacol Biochem Behav 75:335-340 (2003) 

  18. Schulz, B., Fendt, M., Pedersen, V. & Koch, M. Sensitization of prepulse inhibition deficits by repeated administration of dizocilpine. Psychopharmacol (Berlin) 156:177-181 (2001) 

  19. Frankenburg, F. R. Choices in antipsychotic therapy in schizophrenia. Harv Rev Psychiat 6:241-249 (1999) 

  20. Kane, J. M., Leucht, S., Carpenter, D. & Docherty, J. P. Expert consensus guideline series. Optimizing pharmacologic treatment of psychotic disorders. Introduction: methods, commentary, and summary. J Clin Psychiat 64:5-19 (2003) 

  21. Hyman, S. E. & Nestler, E. J. Initiation and adaptation: a paradigm for understanding psychotropic drug action. Am J Psychiat 153:151-162 (1996) 

  22. Dragunow, M. et al. D2 dopamine receptor antagonists induce fos and related proteins in rat striatal neurons. Neuroscience 37:287-294 (1990) 

  23. Konradi, C. & Heckers, S. Antipsychotic drugs and neuroplasticity: Insights into the treatment and neurobiology of schizophrenia. Biol Psychiatry 50:729-742 (2001) 

  24. MacDonald, M. L., Eaton, M. E., Dudman, J. T. & Konradi, C. Antipsychotic drugs elevate mRNA levels of presynaptic proteins in the frontal cortex of the rat. Biol Psychiat 57:1041-1051 (2005) 

  25. Fatemi, S. H. et al. Chronic olanzapine treatment causes differential expression of genes in frontal cortex of rats as revealed by DNA microarray technique. Neuropsychopharmacol 31:1888-1899 (2006) 

  26. Bymaster, F. P. et al. In vitro and in vivo biochemistry of olanzapine: a novel, atypical antipsychotic drug. J Clin Psychiat 58:28S-36S (1997) 

  27. Tarazi, F. I., Baldessarini, R. J., Kula, N. S. & Zhang, K. Long-term effects of olanzapine, risperidone, and quetiapine on ionotropic glutamate receptor types: Implications for antipsychotic drug treatment. J Pharmacol Exp Ther 306:1145-1151 (2003) 

  28. Marcotte, E. R., Srivastava, L. K. & Quirion, R. cDNA microarray and proteomic approaches in the study of brain diseases: focus on schizophrenia and Alzheimer's disease. Pharmacol Ther 100:63-74 (2003) 

  29. Gardonic, F. & Luca, M. D. New targets for pharmaceutical intervention in the glutamatergic synapse. Eur J Pharmacol 545:2-10 (2006) 

  30. Wang, J. Q., Fibuch, E. E. & Mao, L. Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem 100:1-11 (2007) 

  31. Svensson, T. H. Dysfunctional brain dopamine systems induced by psychotomimetic NMDA-receptor antagonists and the effects of antipsychotic drugs. Brain Res Rev 31:320-329 (2000) 

  32. Chong, V. Z., Young, L. T. & Mishra, R. K. cDNA array reveals differential gene expression following chronic neuroleptic administration: implications of synapsin II in haloperidol treatment. J Neurochem 82: 1533-1539 (2002) 

  33. Thomas, E. A. et al. Antipsychotic drug treatment alters expression of mRNAs encoding lipid metabolism- related proteins. Mol Psychiat 8:983-993 (2003) 

  34. Liu, C., Gilmont, R. R., Benndorf, R. & Welsh, M. J. Identification and characterization of a novel protein from sertoli cells, PASS1, that associates with mammalian small stress protein hsp27. J Biol Chem 275: 18724-18731 (2000) 

  35. Whitlock, N. A. et al. Heat shock protein 27 delays Ca2_-induced cell death in a caspase-dependent and - independent manner in rat retinal ganglion cells. Invest Ophthalmol Vis Sci 46:1085-1091 (2005) 

  36. Arion, D. et al. Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia. Biol Psychiat 62:711-721 (2007) 

  37. Liou, Y. J. et al. Haplotype analysis of endothelial nitric oxide synthase (NOS3) genetic variants and tardive dyskinesia in patients with schizophrenia. Pharmacogenet Genomics 16:151-157 (2006) 

  38. Infante, C. et al. Expression of nitric oxide synthase isoforms in the dorsal horn of monoarthritic rats: effects of competitive and uncompetitive N-methyl- D-aspartate antagonists. Arthritis Res Ther 9:R53-R60 (2007) 

  39. Khan, S., Milot, M., Lecompte-Collin, J. & Plamondon, H. Time-dependent changes in CRH concentrations and release in discrete brain regions following global ischemia: effects of MK-801 pretreatment. Brain Res 1016:48-57 (2004) 

  40. Yuan, J., Jia, R. & Bao, Y. Aldosterone up-regulates production of plasminogen activator inhibitor-1 by renal mesangial cells. J Biochem Mol Biol 40:180-188 (2007) 

  41. Kuhl, N. M., Hoekstra, D., Vries, H. D. & Keyser, J. D. Insulin-like growth factor-binding protein 6 inhibits survival and differentiation of rat oligodendrocyte precursor cells. Glia 44:91-101 (2003) 

  42. Ghaleb, A. M. et al. Kruppel-like factor 4 exhibits antiapoptotic activity following $\gamma$ -radiation-induced DNA damage. Oncogene 26:2365-2373 (2007) 

  43. Wang, Z. N. et al. Cloning of a novel kinase (SIK) of the SNF1/AMPK family from high salt diet-treated rat adrenal. FEBS Lett 453:135-139 (1999) 

  44. Hedbacker, K., Hong, S. P. & Carlson, M. Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase. Mol Cell Biol 24: 8255-8263 (2004) 

  45. Ogura, Y. T. et al. Postnatal changes in gene expression of retinal dehydrogenase and retinoid receptors in liver of rats. Life Sci 74:1519-1528 (2004) 

  46. Mitsuia, S., Yamaguchib, N., Osakoa, Y. & Yuria, K. Enzymatic properties and localization of motopsin (PRSS12), a protease whose absence causes mental retardation. Brain Res 1136:1-12 (2007) 

  47. Kamphuis, W., Dijk, F., van Soest, S. & Bergen, A. A. B. Global gene expression profiling of ischemic preconditioning in the rat retina. Molecular Vision 13:1020-1030 (2007) 

  48. Fumagalli, F. et al. Effect of antipsychotic drugs on brain-derived neurotrophic factor expression under reduced N-methyl-D-aspartate receptor activity. J Neurosci Res 72:622-628 (2003) 

  49. Kusumi, I. et al. Differential effects of subchronic treatments with atypical antipsychotic drugs on dopamine D2 and serotonin 5-HT2A receptors in the rat brain. J Neural Transm 107:295-302 (2000) 

  50. Chang, C. C. et al. Methimazole alleviates hepatic encephalopathy in bile-duct ligated cirrhotic rats. J Chin Med Assoc 69:563-568 (2006) 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로