$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

"위해성" 개념을 이용한 오염지역 정화 및 관리의 과학적 타당성
Scientific Feasibility on the Risk-Based Clean-up and Management of Contaminated Sites 원문보기

지하수토양환경 = Journal of soil and groundwater environment, v.12 no.1, 2007년, pp.1 - 35  

신원식 (경북대학교 환경공학과)

초록
AI-Helper 아이콘AI-Helper

지난 수십년 동안 토양내 수착된 오염물질이 접촉시간(contact time)이 경과함에 따라 생물학적 또는 화학적 이용성의 감소는 일반적으로 인식되어 오고 있다. 이와 같은 aging 또는 격리(sequestration)라 불리는 현상이 위해성에 직접적인 영향을 미친다는 것이 알려져 있다. 이러한 현상은 소수성 오염물질을 중심으로 보고되어 왔으나, 최근 연구결과에 의하면 중금속의 경우에도 이와 같은 현상이 발견되고 있으며, 이는 오염물질의 흡-탈착 이력(hysteresis) 현상, 비가역 흡착, 탈착저항성, 비평형 흡착 등과 직접적으로 연관된 것으로 알려지고 있다. Aging 또는 sequestration에 의한 오염물질의 생이용성(bioavailability)의 감소는 인체에 대한 실질적인 위해성의 감소를 의미한다. 최근 들어 이와 같은 과학적인 증거를 토대로 단순한 오염물질의 농도 측정이 아니라 위해성에 근거한 오염 복원(또는 관리)의 개념이 도입되어 환경친화적인 복원수준의 선정에 적용하고 있다. 이는 토양내 오염물질의 총농도가 아니라 오염물질의 생이용성 또는 독성을 기준으로 하여 정화수준을 결정함으로써 오염부지의 처리비용과 노력의 절감효과를 동시에 기대할 수 있기 때문이다. 토양내 잔류오염물질의 생이용성 또는 독성은 오염물질의 이동 또는 거동 특성에 의해 영향을 받으며 결국 생물체로의 노출 경로와 생체축적에 직접적인 영향을 미친다. 본 논문에서는 토양내 오염물질의 위해성을 평가하여 토양오염복원에 적용시 과학적인 타당성에 대해 살펴보고자 하였다.

Abstract AI-Helper 아이콘AI-Helper

In the last decades, the decrease in biological or chemical availability of sorbed contaminants as contact time passed, is generally accepted. This phenomenon so called as "aging" or "sequestration" is known to directly affect risk of the contaminats. This was observed for mainly for hydrophobic org...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
생이용성(bioavailability)에 관한 평가는 일반적으로 무엇을 기준으로 하는가? 일반적으로 생이용성(bioavailability)에 관한 평가는 순수화학물질이 그 자체로 생물체에 노출되는 경우를 기준으로 한다. 그러나 실제는 화학물질이 용액상태로 녹아 있는 경우가 대부분이며 또한 토양 내에 장시간 머무르면서 휘발하거나 분해되어 실제 남아있는 양은 달라질 수 있다.
최근 토양 내 소수성 유기오염물질의 미생물에 의한 생분해를 신속하게 측정하기 위한 방법으로 사용되는것은? 최근에는 토양 내 소수성 유기오염물질의 미생물에 의한 생분해를 신속하게 측정하기 위한 방법으로 용매, 계면활성제(HPCD), Tenax, XAD, SPME 등이 사용되고 있다(Table 2).
Bulk soil test 중 Earthworm toxicity test는 무엇인가? Earthworm toxicity test는 토양 혹은 수중의 오염물질이 지렁이의 피부를 통해 접촉하여 흡수되거나 혹은 토양 물질을 섭취한 후의 개체수의 변화 측정이나 생체량 변화의 측정을 통해서 평가하는 방법이다. 따라서 단일물질에 의한 오염이 아닐 경우에는 여러 화학종에 따른 민감한 결과를 얻기는 어렵다.
질의응답 정보가 도움이 되었나요?

참고문헌 (95)

  1. 김영규, 토양내 소수성 유기화합물의 흡착. 탈착거동 및 생물학 적 이용성, 경북대학교 석사학위 논문, 2002 

  2. 남경필, 김재영, 2002, 생물학적 이용성과 aging이 오염토양의 정 화수준 결정에 미치는 영향, 대한환경공학회지, 24, 1975-2000 

  3. 박준형, 인산염계 화합물과 개질점토를 이용한 중금속 오염토양 의 고정화, 금오공과대학교, 석사학위논문, 2005 

  4. 환경부, 토양오염 해성 평가방안 마련을 위한 연구용역: 위해성 에 근거한 토양복원전략 모색, 한국지하수토양환경학회, 2003. pp. 324 

  5. Ainsworth, C.C., Pilon, J.L., and Gassman, P.L., 1994, Cobalt, cadmium, and lead sorption to hydrous iron-oxide-residence time effect, Soil Sci. Soc. Am J., 58, 1615-1623 

  6. Alexander, M., 2000, Ageing, bioavailability, overestimation of risk from environmental pollutants, Environ. Sci. Technol., 34, 4259-4265 

  7. Berti, W.R. and Cunningham, S.D., 1997, In-place inactivation of Pb in Pb-contaminated soils, Environ. Sci. Technol., 31, 1359- 1364 

  8. Bonaccorsi, A., di Domenico, A., Fanelli, R., Merli, F., Vanzate, R., and Zapponi, G.A., 1984. The influence of soil particle adsorption on 2,3,7,8-tetrachlorodibenzo-p-dioxin biological uptake in the rabbit. Arch. Toxicol. Suppl. 7, 431-434 

  9. Bouchard, D.C., 2003, Cosolvent effects of phenanthrene sorption- desorption on a freshwater sediment, Environ. Toxicol. Chem., 22, 736-740 

  10. Chen, M., Ma, K.Q., Singh, A.P., Cao, R.X., and Melamed, R., 2003, Field demonstration of in situ immobilization of soil Pb using P amendments, Adv. Env. Res., 8, 93-102 

  11. Chiou, C.T. and Kile, D.E., 1998, Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations, Environ. Sci. Technol., 32, 338-343 

  12. Conder, J.M. and Lanno, R.P., 2000, Evaluation of surrogate measures of cadmium, lead, and zinc bioavailability to Eisenia fetida, Chemosphere, 41, 1659-1668 

  13. Comans, R.N.J., 1987, Adsorption, desorption and isotopic exchange of cadmium on illite-evidence for complete reversibility, Wat. Res., 21, 1573-1576 

  14. Cornellison, G., Rigterink, H., Ferdinandy M.M.A., and van Noort, P.C.M., 1998, Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation, Environ. Sci. Technol., 32, 966-970 

  15. Dasappa, S.M. and Loehr, R.C., 1991, Toxicity reduction in contaminated soil bioremediation processes, Wat. Res., 25, 1121-1130 

  16. Davis, B.N.K., 1971, Laboratory studies on the uptake of aldrin and dieldrin by earthworms, Soil Biol. Biochem., 3, 221-233 

  17. Decker, G.C., Bruce, W.N., and Bigger, J.H., 1965, The accumulation and dissipation of residues resulting from the use of aldrin in soils, J. Econ. Entomol., 58, 266-271 

  18. Dzombak, D.A. and Morel, F.M.M., 1990, Surface Complexation Modeling: Hydrous Ferric Oxide, Wiley, New York 

  19. Edwards, C.A., Beck, S.D., and Lichtenstein, E.P., 1957, Bioassay of aldrin and lindane in soil, J. Econ. Entomol., 50, 622-626 

  20. Eick, M.J., Naprstek, B.R., and Brady, P.V., 2001, Kinetics of Ni(II) sorption and desorption on kaolinite: Residence time effects, Soil Sci., 166, 11-17 

  21. Eick, M.J., Peak, J.D., Brady, P.V., and Pesek, J.D., 1999, Kinetics of lead adsorption/desorption on goethite: Residence time effect, Soil Sci., 164, 28-39 

  22. Ford, R.G., Scheinost, A.C., Scheckel, K.G., and Sparks, D.L., 1999, The link between clay mineral weathering and the stabilization of Ni surface precipitates, Environ. Sci. Technol., 33, 3140-3144 

  23. Ford, R.G., Scheinost, A.C., and Sparks, D.L., 2001, Frontiers in metal sorptin/precipitation mechanism on soil mineral surfaces, Adv. Agron., 74, 41-62 

  24. Griest, W.H., Stewart, A.J., Tyndall, R.L., Caton, J.E., Ho, C.H., Ironside, K.S., Caldwell, W.M., and Tan, E., 1993, Chemical and toxicological testing of composted and explosives-contaminated soil, Environ. Toxicol. Chem., 12, 1105-1116 

  25. Harper, M.P., Davidson, W., Zhang, H., and Tych, W., 1998, Kinetics of metal exchange between solids and solutions in sediments and soils interpreted from DGT measured fluxes, Geochim. Cosmochim. Acta, 62, 2757-2770 

  26. Hatzinger, P.B., and Alexander, M., 1995. Effect of aging of chemicals in soil on their biodegradability and extractability, Environ. Sci. Technol., 29, 537-545 

  27. Hettiarachchi, G.M., Pierzynski, G.M., and Ransom, M.D., 2000, In situ stabilization of soil lead using phosphorus and manganese oxide, Environ. Sci. Technol., 34, 4614-4619 

  28. Huang, W.L., Yu. H., and Weber. W.J., 1998, Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments-1. A comparative analysis of experimental protocols, J. Contam. Hydrol., 31, 129-148 

  29. Hulzebos, E.M., Adema, D.M.M., Dirven van Breemen, E.M.L., Henzen, L., van Dis, W.A., Herbold. H.A., Hoekstra, J.A., Baerselman, R., and van Gestel. C.A.M., 1993. Phytotoxicity studies with lettuce (Lactuca sativa) in soil and nutrient solution, Environ. Toxicol. Chem., 12, 1079-1094 

  30. Kalucheva, I. and Paskaleva, K., 1967, Electron-microscope study of micropores in certain soil type (In Bulgarian), Pochvoznanie i Arokhimiya, 2, 3-16 

  31. Kan, A.T., Fu., G., and Hunter, M.A., 1997, Irreversible adsorption of naphthalene and tetrachlorobiphenyl to Lula and surrogate sediments, Environ. Sci. Technol., 31, 2176-2185 

  32. Kan, A.T., Fu, G., Hunter, M.A., Chen, W., Ward, C.H., and Tomson, M.B., 1998, Irreversible sorption of neutral hydrocarbons to sediments: Experimental observations and model predictions, Environ. Sci. Technol., 32, 892-902 

  33. Kottler, B.D. and Alexander, M., 2001, Relationship of properties of polycyclic aromatic hydrocarbons to sequestration in soil, Env. Poll., 113, 293-298 

  34. Krauss, M. and Wilcke, W., 2001, Biomimetic Extraction of PAHs and PCBs from Soil with octadecyl-modified silica disks to predict their availability to earthworms, Environ. Sci. Technol., 35, 3931-3935 

  35. Krauss, M., Wilcke, W., and Zech, W., 2000, Availability of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) to earthworms in urban Soils, Environ Sci. Technol., 34, 4335-4340 

  36. La Force, M.J., Hansel, C.M., and Fendorf, S., 2000, Arsenic speciation, seasonal transformations, and co-distribution with iron in a mine waste-influenced palustrine emergent wetland, Environ. Sci. Technol., 34, 3937-3943 

  37. Lei, L., Bagchi, R., Khodadoust, A.P., Suidan, M.T., and Tabak, H.H., 2006, Bioavailability prediction of polycyclic aromatic hydrocarbons in field-contaminated sediment by mild extractions, J. Env. Eng., 132, 384-391 

  38. Lei, L., Suidan, M.T., Khodadoust, A.P., and Tabak, H.H., 2004, Assessing the bioavailability of PAHs in field-contaminated sediment using XAD-2 assisted desorption, Environ. Sci. Technol., 38, 1786-1793 

  39. Li, A. and Liu, X., 2005, Combined effects of aging and cosolvents on sequestration of phenanthrene in soils, J. Env. Eng., 131, 1068-1072 

  40. Linkov, I., Satterstrom, F.K., Kiker, G., Batchelor, C., Bridges, T., and Ferguson, E., 2006, From comparative risk assessment to multi-criteria decision analysis and adaptive management: Recent developments and applications, Environ. Int., 32, 1072- 1093 

  41. Linz, D.G. and Nakles, D.V. (editor) 1997. Environmentally Acceptable Endpoints in Soil. American Academy of Environmental Engineers, pp. 630 

  42. Liste H. and Alexander, M., 2002, Butanol extraction to predict bioavailability of PAHs in soil, Chemosphere, 46, 1011-1017 

  43. Lock, K. and Janssen, C.R., 2003, Influence of ageing on znc bioavailability in soils, Env. Poll., 126, 371-374 

  44. Luan, T.G., Yu, K.S.H., Zhong, Y., Zhou, H.W., Lan, C.Y., and Tam, N.F.Y., 2006, Study of metabolites from the degradation of polycyclic aromatic hydrocarbons (PAHs) by bacterial consortium enriched from mangrove sediments, Chemosphere, 65, 2289-2296 

  45. Ma, Y.B. and Uren, N.C., 1998, Transformations of heavy metals added to added to soil-application of a new sequential extraction procedure, Geoderma, 84, 157-168 

  46. Ma, Y., Lombi, E., Oliver, I.W., Nolan, A.L., and McLaughlin, M.J., 2006, Long-term aging of copper added to soils, Environ. Sci. Technol., 40, 6310-6317 

  47. Macleod, C.J.A. and Semple, K.T., 2000, Influence of contact time on extractability and degradation of pyrene in soils, Environ. Sci. Technol., 34, 4952-4957 

  48. Manilal, V.B. and Alexander, M., 1991. Factor affecting the microbial degradation of phenanthrene in soil, Appl. Microbiol. Biotechnol., 35, 401-405 

  49. Martinez, C.E. and Mcbride, M.B., 2000, Aging of coprecipitated Cu in alumina changes in structural location, chemical form, and solubility, Geochim Cosmochim Acta, 64, 1729-1736 

  50. Mattson, A.M., Kahrs, R.A., and Murphy, R.T., 1970, Quantitative determination of triazine herbicides in soils by chemical analysis, Residue Rev., 32, 371-390 

  51. McCall, P.J. and Agin, P.L., 1985, Desorption kinetics of picloram as affected by residence time in the soil, Environ. Toxicol. Chem., 4, 37-44 

  52. McCloskey, W.B. and Bayer. D.E., 1987, Thermodynamics of fluridone adsorption and desorption in three California soils, Soil Sci. Soc. Am. J., 51, 605-612 

  53. McGowen, S.L., Basta, N.T., and Brown, G.O., 2000, Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil, J. Environ. Qual., 30, 493-500 

  54. McGroddy, S.E., Farrington, J.W., and Gschwend. P.M., 1996, Comparison of the in situ and desorption sediment-water partitioning of polycyclic aromatic hydrocarbons and polychlorinated biphenyls, Environ. Sci. Technol., 30, 172-177 

  55. McLaren, R.G., Backes, C.A., Rate, A.W., and Swift, R.S., 1998, Cadmium and cobalt desorption knetics from soil clays: Effect of sorption period, Soil Sci. Soc. Am. J., 62, 332-337 

  56. Mingelgrin, U. and Gerstl, Z., 1993, A unified approach to the interaction of small molecules with macrospecies. In: A.J. Beck, K.C. Jones, M.H.B. Hayes, and U. Mingelgrin, eds., Organic Substances in Soil and Water: Natural Constituents and their Influence on Contaminant Behaviour, p. 102-127. Royal Society of Chemistry, Cambridge, U.K 

  57. Mossop, K.F. and Davidson, C.M., 2003, Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments, Anal. Chim. Acta, 478, 111-118 

  58. Nachtegaal, M. and Sparks, D.L., 2003, Nickel sequestration in a kaolinite-humic acid complex, Environ. Sci. Technol., 37, 529-534 

  59. Northcott, G.L. and Jones. K.C., 2001, Partitioning, extractability, and formation of nonextractable PAH residues in soil. 1. Compound differences in aging and sequestration, Environ. Sci. Technol., 35, 1103-1110 

  60. O'Reilly, S.E., Strawn, D.G., and Sparks, D.L., 2001, Residence time effect on arsenate adsorption/desorption mechanisms on goethite, Soil Sci. Soc. Am. J., 65, 67-77 

  61. Opdyke, D.R. and Loehr, R.C., 1999, Determination of chemical release rates from soils: Experimental design, Environ. Sci. Technol., 33, 1193-1199 

  62. Opdyke, D.R. and Loehr, R.C., 1999, Statistical analysis of chemical release rates from soils, J. Soil Contam., 8, 541-558 

  63. Oste, L.A., Dolfing, J., Ma, W.C., and Lexmond, T.M., 2001, Cadmium uptake by earthworms as related to the availability in the soil and the intestine, Environ. Toxicol. Chem., 20, 785-1791 

  64. Parrish, Z.D., Banks, M.K., and Schwab, A.P., 2005, Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil, Env. Poll., 137, 187- 197 

  65. Peijnenburg, W.J.G.M., Baerselman, R., de Groot, A.C., Jager, T., Posthuma, L., and Van Veen, R.P.M., 1999, Relating environmental availability to bioavailability soil-type-dependent metal accumulation in the oligochaete Eisenia andrei, Ecotoxicol. Environ. Safe., 44, 294-310 

  66. Reid, B.J., Stokes, J.D., Jones, K.C., and Semple, K.T., 2000, HPCD extraction for the evaluation of PAH bioavailability, Environ. Sci. Technol., 34, 3174-3179 

  67. Scheckel, K.G. and Sparks, D.l., 2001, Dissolution kinetics of nickel surface precipitates on clay mineral and oxide surfaces, Sol. Sci. Soc. Am. J., 65, 685-694 

  68. Scheidegger, A.M. and Sparks, D.L., 1996, Kinetics of the formation and the dissolution of nickel surface precipitates on pyrophyllite, Chem. Geol., 132, 157-164 

  69. Seaman, J.C., Arey, J.S., and Bertsch, P.M., 2001, Immobilization of nikel and other metals in contaminated sediments by hydroxyapatite addition, J. Environ. Qual., 30, 460-469 

  70. Sparks, D.L., 2003, Environmental Soil Chemistry, Academic Press, 2nd ed., pp. 350 

  71. Steinberg, S.M., Pignatello, J.J., and Sawhney. B.L., 1987, Persistence of 1,2-dibromoethane in soils: entrapment in intraparticle micropores, Environ. Sci. Technol., 21, 1201-1208 

  72. Strawn, D.G. and Sparks, D.L., 2000, Effects of soil organic matter on the kinetics and mechanisms of Pb(II) sorption and desorption in soil, Soil Sci. Soc. Am. J., 64, 144-156 

  73. Strawn, D.G., Scheidegger, A.M., and Sparks, D.L., 1998, Kinetics and mechanism of Pb(II) sorption and desorption at the aluminium oxide-water interface, Environ. Sci. Technol., 32, 2596-2601 

  74. Stuer-Lauridsen, F., 2005, Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment, Env. Poll., 136, 503-524 

  75. Sun, H.W. and Li, J.G., 2005, Availability of pyrene in unaged and aged soils to earthworm uptake, butanol extraction and SFE, Water Air Soil Poll., 166, 353-365 

  76. Symons, B.D. and Sims, R.C., 1998, Assessing detoxification of a complex hazardous waste using the microtox bioassay, Arch. Environ. Contam. Toxicol., 17, 497-505 

  77. Technical Report R1. 1992, Feasibility study for the remediatino of surface contamination at an MGP site. Draft from consulting firm, September 29 

  78. Technical Report R16a. 1994. operations report : (wood treating site). Consulting firm, April 

  79. Technical Report R16b. 1992. Treatability evaluation to determine the feasibility of in-situ flushing at a wood preserving site. Laboratory Progress Report, Consulting firm, October 

  80. Technical Report R25. 1993. Results of bench-scale biotreatability testing of petroleum hydrocarbons in soils at the petroleum products plant. Consulting firm, November 

  81. Tessier, A., Campbell, P.G.C., and Bisson, M., 1979, Sequential extraction procedure for the speciation of particulate trace metals, Anal. Chem., 51, 884-851 

  82. van der Wal, L., Jager, T., Fleuren, R.H.L.J., Barendregt, A., Sinnige, T.L., Van Gestel, C.A.M., and Hermens, J.L.M., 2004, Solid-phase microextraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil, Environ. Sci. Technol., 38, 4842-4848 

  83. Verbruggen, E.M.J., Vaes, W.H., Parkerton, T.F., and Hermens, J.L.M., 2000, Polyacrylate-coated SPME fibers as a tool to simulate body residues and target concentrations of complex organic mixtures for estimation of baseline toxicity, Environ. Sci. Technol., 34, 324-331 

  84. Vinturella, A.E., Burgess, R.M., Coull, B.A., Thompson, K.M., and Shine, J.P., 2004, Use of passive samplers to mimic uptake of polycyclic aromatic hydrocarbons by benthic polychaetes, Environ. Sci. Technol., 38, 1154-1160 

  85. Vig., K., Megharaj, M., Sethunathan, N., and Naidu, R., 2003, Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review, Adv. Environ. Res., 8, 121-135 

  86. Wang, X., Yu, X., and Bartha, R., 1990, Effect of bioremediation on polycyclic aromatic hydrocarbon residues in soil, Environ. Sci. Technol., 24, 1086-1089 

  87. Weber, J.B. and Weed, S.B., 1974, Effects of soil on the biological activity of pesticides, In: W.D. Guenzi, ed., Pesticides in Soil and Water, pp. 223-253. Soil Sci. Soc. Am., Madison, WI, USA 

  88. Weber, W.J. and Huang. W.L., 1996, A distributed reactivity model for sorption by soils and sediments. 4. Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions, Environ. Sci. Technol., 30, 881-888 

  89. Weissenfels, W.D., Klewer, H.J., and Langhoff, J., 1992, Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity, Appl. Microbiol. Biotechnol., 36, 689-696 

  90. Wild, S.R. and Jones, K.C., 1993, Biological and abiotic losses of polynuclear aromatic hydrocarbons (PAHs) from soils freshly amended with sewage sludge, Environ. Toxicol. Chem., 12, 5- 12 

  91. Williamson, D.G., Loehr, R.C., and Kimura, Y., 1998, Release of chemicals from contaminated soils, J. Soil Contam., 7, 543-558 

  92. Wood, W.W., Kraemer, T.F., and Hearn, P.P.Jr., 1990, Intragranular diffusion: an important mechanism influencing solute transport in clastic aquifers, Science, 247, 1569-1572 

  93. Xing, B.S. and Pignatello. J.J., 1996, Time-dependent isotherm shape of organic compounds in soil organic matter: Implications for sorption mechanism, Environ. Toxicol. Chem., 15, 1282-1288 

  94. You, J., Landrum, P.F., and Lydy, M.J., 2006, Comparison of chemical approaches for assessing bioavailability of sedimentassociated contaminants, Environ. Sci. Technol., 40, 6348-6353 

  95. Zhang, H., Davison, W., Miller, S., and Tych, W., 1995, In situ high resolution measurements of fluxes of Ni, Cu, Fe, and Mn and concentrations of Zn and Cd in porewaters by DGT, Geochim. Cosmochim. Acta, 59, 4181-4192 

저자의 다른 논문 :

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로