$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고축적식물의 중금속 흡수기작과 뿌리에 의한 근권 토양의 화학변화 - 총설
Hyperaccumulation mechanism in plants and the effects of roots on rhizosphere soil chemistry - A critical review 원문보기

韓國土壤肥料學會誌 = Korean journal of soil science & fertilizer, v.40 no.4, 2007년, pp.280 - 291  

김권래 ,  () ,  () ,  김계훈 (서울시립대학교 환경원예학과)

초록
AI-Helper 아이콘AI-Helper

토양중 중금속을 흡수해서 체내에 고농도로 축적할 수 있는 식물, 이른바 고축적식물(hyperaccumulator)의 발견으로 오염토양에 대한 식물복원(phytoremediation) 기술에 대한 많은 연구들이 수행되고 있다. 이들 연구의 방향은 크게 고축적식물의 중금속 축적 기작을 밝히기 위한 것과 축적효율을 높임으로써 복원 효율을 향상시키는 실용적인 기술개발로 나누어진다. 지금까지 고축적식물에 의한 중금속 축적 기작은 다섯 가지의 특이 기작으로 알려져 있는데, 1) 뿌리세포의 중금속 흡수 증진, 2) 식물체 조직내의 중금속 이동성 향상, 3) 중금속의 무독화(detoxification) 및 격리(sequestration), 4) 토양-뿌리 경계면에서의 중금속 유효도 증진, 그리고 5) 중금속 오염토양으로의 능동적인 뿌리의 성장 등이 이에 속한다. 일반적으로 토양 중 낮은 중금속 유효도는 식물복원 기술의 현장 적용에 있어 제한요소로 간주된다. 이를 극복하기 위해서는 위에 기술된 다섯 가지 기작 중 고축적식물의 뿌리가 근권 토양중 중금속의 화학변화에 미치는 영향을 이해하는 것이 매우 중요하다. 식물 뿌리에 의한 근권 토양의 pH 변화와 뿌리에서 나오는 분자량이 적은 유기산(low-molecular-weight organic acids, LMWOAs)과 같은 유기성 분비물은 근권부 토양의 화학적 특성을 변화시키고 결과적으로 중금속의 유효도를 변화시킨다. 예를 들어 뿌리에서 나오는 $H^+$ 이온은 토양 pH를 감소시키고 이에 따라 중금속의 유효도는 증가한다. 또한 고농도의 중금속에 노출된 뿌리는 많은 양의 유기물질을 분비하게 되고 근권 토양에 축적되는 이 유기물질은 토양중 중금속과 결합하여 유기복합물질(organo-metallic complexes)을 형성하면서 유효도를 증가시킨다.

Abstract AI-Helper 아이콘AI-Helper

Much research has been conducted in the field of phytoremediation since the discovery of the range of plants known as hyperaccumulators. Research has focused simultaneously on elucidating the mechanism of metal(loid) accumulation and development of practical techniques to enhance accumulation effici...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

성능/효과

  • (1996) found that exposing several Ni hyperaccumulator species of Alyssum to Ni resulted in a large and proportional increase in the levels of histidine in the xylem sap, which was shown to be complexed with Ni. Furthermore, it was shown that supplying exogenous histidine to the nonaccumulator A. montanum, either as a foliar spray or in the root medium, considerably increased the nickel tolerance of this species and greatly increased nickel flux through the xylem.
  • Blaylock and Huang (2000a) also suggest that hyperaccumulators are able to modify the rhizosphere to enhance metal solubility. Their study showed increases in Zn accumulationin the shoot of the non-hyperaccumulator Thlaspi arvense, when it was co-cultivated with a Zn hyperaccumulator Thlaspi caerulescens.
  • (2001) investigated the difference in adsorption ability between a Cd hyperaccumulating ecotype, Thlaspi caerulescens, from Ganges in southern France and a Cd non-hyperaccumulating ecotype, Thlaspi caerulescence, from Prayon in Belgium. Their study showed that the Vmax for Cd influx was five fold higher in the high Cd ecotype than in the low Cd ecotype. This result also suggests a high-affinity Cd transport system in the Cd hyperaccumulating population of Thlaspi caerulescens which enabled it to accumulate a higher level of Cd than the non-hyperaccumulating ecotype.
  • (1996), this ability is associated with the amount of metal transporters in the root. Their study showed that the Zn hyperaccumulator Thlaspi caerulescens had a significantly higher uptake rate of Zn when compared to the non-hyperaccumulator Thlaspi arvense. The hyperaccumulation was attributed to the plasma membranes of root cells of Thlaspi caerulescens having a higher density of Zn transporters.
  • However, decreases in the soil solution pool accounted for only about 1%and 50% of the total Zn and Cd uptake, respectively, by the plants. These results suggested that most of the Zn and approximately 50% of the Cd taken up by Thlaspi caerulescens were from a non-labile fraction. This meant that either Thlaspi caerulescens was highly efficient at mobilising Zn orCd which was not initially soluble, or that the soils used had low buffering capacities that were able to replenish the soil solution Zn and Cd within a very short time.
  • In the root, Zn was mainly coordinated with histidine, while in the xylem sap Zn was mainly transported as a free hydrated cation, and in the leaves it was primarily complexed with organic acids. This study indicated that the role of metalinducing ligands seemed to depend on both metal type and plant species. Therefore, further work is required to ascertain whether metal-induced production of histidine (or perhaps other nitrogen-containing ligands) is found in other groups of nickel hyperaccumulators, or indeed in other hyperaccumulators for other metals.

후속연구

  • Even though several researchers have suggested the possible mobilizing ability of the hyperaccumulator root, a complete understanding of the exudation of phytosiderophores and organic acids, and the resulting changes in pH and redox potential, which are considered key factors in controlling metal availability in the rhizosphere (Lombi et al., 2000), isstill poorly understood and further studies will be of great benefit to the field.
  • Even though these studies show the possibility that metal-transporters are in operation in the plant roots, more studies with other hyperaccumulators and metals are necessary for confirmation of metal transporter function.
  • This study indicated that the role of metalinducing ligands seemed to depend on both metal type and plant species. Therefore, further work is required to ascertain whether metal-induced production of histidine (or perhaps other nitrogen-containing ligands) is found in other groups of nickel hyperaccumulators, or indeed in other hyperaccumulators for other metals.
  • , 2003). These contrasting findings may be due to the different soil and plant types employed in each study and hence further investigation considering the affect of plant and soil type on soil acidification would be of great benefit.
본문요약 정보가 도움이 되었나요?

참고문헌 (98)

  1. Alloway, B.S., A.P. Jackson. 1991. The behaviour of heavy metals in sewage sludge amended soils. Sci. Total Environ. 100:151-176 

  2. Awad, F., V. Romheld, H. Marschner. 1994. Effect of root exudates on mobilization in the rhizosphere and uptake of iron by wheat plants. Plant and soil 165:213-218 

  3. Bartlett, R.J., D.C. Regio. 1972. Effects of chelation on toxicity of aluminium. Plant and Soil 37:419-423 

  4. Bengough, A.G., B.M. McKenzie. 1997. Sloughing of root cap cells decreases the frictional resistance to maize (Zea mays L.) root growth. J. Exp. Bot. 48:885-893 

  5. Bernal, M.P., S.P. McGrath, A J. Miller, A J.M. Baker. 1994. Comparison of the chemical changes in the rhizosphere of the nickel hyper accumulator Alyssum murale with the nonaccumulator Raphanus sativus. Plant and Soil 164:251-259 

  6. Bert, V., P. Meerts, P. Saumitou-Laprade, P. Salis, W. Gruber, N. Verbruggen. 2003. Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant and Soil 249(1):9-18 

  7. Boominathan, R., P.M. Doran. 2003. Cadmium tolerance and antioxidative defences in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotech. Bioengin. 83(2):158-167 

  8. Brooks, R.R., S. Shaw, A. Asensi Marfil. 1981. The chemical form and physiological function of nickel in some Iberian Alyssum species. Physiol. Plant 51:167-170 

  9. Chaignon, V., D. Di Malta, P. Hinsinger. 2002. Fe-deficiency increases Cu acquisition by wheat cropped in a Cucontaminatedvineyard soil. New Phytol. 154:121-130 

  10. Chen, H., T. Cutright. 2001. EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere 45(1):21-28 

  11. Cieslinski, G., K.C.J. Van Rees, A.M. Szmigielska, G.S.R. Krishnamurti, P.M. Huang. 1998. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant and soil 203:109-117 

  12. Clark, R.B. 1969. Organicacids from leaves of several crop plants by gas chromatography. Crop Science 9:341-343 

  13. Cobbett, C.S. 2000. Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr. Opin. Plant BioI. 3:211-216 

  14. Cunningham, S.D., W.R. Berti, J.W. Huang.1995. Phytoremediation of contaminated soils. Biotechnol. 13:393-397 

  15. Curl, E.A., B. Trueglove. 1986. The rhizosphere. Berlin: Springer-Verlag 

  16. Darrah, P.R. 1991. Measuring the diffusion-coefficient of rhizosphere exudates in soil 2. The diffusion of sorbing compounds. J. Soil Sci. 42:421-434 

  17. Delhaize, E., P.R. Ryan, P.J. Randall. 1993. Aluminium tolerance in wheat (Triticum aestivum L.) 2. Aluminium stimulated excretion of malic acid from root apices. Plant physiol. 103:695-702 

  18. Ebbs, S., I. Lau, B. Ahner, L. Kochian. 2002. Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens(J. & C. Presl). Planta 214:635-640 

  19. Elgala, A.M., A. Amberger. 1988. Root exudate and the ability of com to utilize insoluble sources of iron. J. Plant Nutr. 11 :677-690 

  20. Feng, M-H., S-Q. Shan, S. Zhang, B. Wen. 2005. A comparison of the rhizosphere-based method with DTPA, EDTA, $CaCl_{2}$ , and $NaNO_{3}$ extraction methods for prediction of bioavailability of metals in soil to barley. Environ. Pollut. 137(2):231-240 

  21. Fox, T.R., N.B. Comerford, W.W. McFee. 1990. Phosphorus and aluminium from a spodic horizon mediated by organic acids. Soil Sci. Soc. Am. J. 54:1763-1767 

  22. Gramss, G., K.D. Voigt, F. Bublitz, H. Bergmann. 2003. Increased solubility of (heavy) metals in soil during microbial transformations of sucrose and casein amendments. J. Basic Microbial 43(6):483-498 

  23. Griffin, G.J., M. Hale, F.J. Shay. 1976. Nature and quantity of sloughed organic matter produced by roots of axenic peanut plants. Soil BioI. Biochem 8:29-32 

  24. Guerinot, M.L., Y. Yi. 1994. Iron: nutritious, noxious, and not readily available. Plant PhysioI.104:815-820 

  25. Han, F., X.Q. Shan, J. Zang, Y.N. Xie, Z.G. Pei, S.Z. Zhang, Y.G. Zhu. 2005. Organic acids promote the uptake of lanthanum by barley roots. New Phytol. 165:481-492 

  26. Hawes, M.C., U. Gunawardena, S. Miyasaka, X. Zhao. 2000. The role of root border cells in plant defence. Trends Plant Sci. 5:128-133 

  27. Hersman, L., T. Loyd, G. Sposito. 1995. Siderophore-promoted dissolution of hematite. Geochim. Cosmochim. Acta 59:3327-3330 

  28. Hettiarachchi, G.M., G.M. Pierzynski. 2004. Soil lead bioavailability and in situ remediation of lead-contaminated soils: A review. Environ. Progress 23(1):78-93 

  29. Hinsinger, P. 1998. How do plantroots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Ave. Agron. 64:225-265 

  30. Hinsinger, P. 2001. Bioavailability of trace elements as related to root-induced chemical changes in the rhizosphere. p. 25-40. In G.R. Gobran, W.W. Wenzel, E. Lombi (ed.) Trace elements in the rhizosphere. Boca Raton, CRC 

  31. Hinsinger, P., G.R. Gobran, P.J. Gregory, W.W. Wenzel. 2005a. Rhizosphere geometry and heterogeneity arising from rootmediated physical and chemical processes. New Phytol. 168:293-303 

  32. Hinsinger, P., C. Plassard, B. Jaillard. 2005b. Rhizosphere: A new frontier for soil biogeochemistry. J. Geochem. Exp. 88:210-213 

  33. Hue, N.V., G.R. Craddock, F. Adams. 1986. Effect of organic acids on aluminium toxicity in subsoils. Soil Sci. Soc. Am. J. 50:28-34 

  34. Hutchinson, J. J., S.D. Young, S.P. McGrath, H.M. West, C.R Black, A.J.M. Baker. 2000. Determining uptake of 'non-labile' soil cadmium by Thlaspi caerulescens using isotopic dilution techniques. New Phytol. 146:453-460 

  35. Ismail, C., O. Levent, K. Serna. 1996. Zinc-efficient wild grasses enhance release of phytosiderophores under zinc deficiency. J. Plant Nut. 19(3&4):551-563 

  36. Jones, D.L. 1998. Organic acids in the rhizosphere a critical review. Plant and Soil 205:25-44 

  37. Jones, D.L., P.R. Darrah. 1996. Re-sorption of organic-compounds by roots of Zea may L. and its consequences in the rhizosphere. 3. characteristics of sugar influx and efflux. Plant and Soil 178: 153-160 

  38. Jones, D.L., P.R. Darrah, L'V, Kochian. 1996. Critical-evaluation of organic-acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant and Soil 180:57 -66 

  39. Jones, D.L., A. Hodge, Y. Kuzyakov. 2004. Plant and mycorrhizal regulation of rhizodeposition. New Phytol. 163:459-480 

  40. Kersten, W.J., R. R. Brooks, R.D. Reeves, T. Jaffre. 1980. Nature of nickel complexes in Psychotria douarrei and other nickelaccumulating plants. Phytochemistry 19:1963-1965 

  41. Kerven, G.L., C.J. Asher, D.G. Edwards, Z. Ostatek-Boczynski. 1991. Sterile solution culture techniques for aluminium studies involving organic acids. J. Plant Nut. 14:975-985 

  42. Kidd, P.S., M. Lugany, C. Poschenrieder, B. Gunse, J. Barcelo. 2001. The role of root exudates in aluminium resistance a siliconinduced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J. Exp. Bot. 52:1339-1352 

  43. Knight, B., F.J. Zhao, S.P. McGrath, Z.G. Shen. 1997. Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution. Plant and Soil 197:71-78 

  44. Kochian, L.V. 1995. Cellular mechanisms of aluminium toxicity and resistance in plants. Ann. Rev. Plant Physiol. Plant Mol. BioI. 46:237-260 

  45. Kraffczyk, L., G. Trolldenier, H. Beringer. 1984. Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil BioI. Biochem.16:315-322 

  46. Kramer, U. 1997. Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum. Nucl. Instr. Meth. Phys. Res. 130:346-350 

  47. Kramer, V., J. D. Cotter-Howells, J. M. Charnock, A. J. M. Baker, A.A.C. Smith. 1996. Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635-638 

  48. Kramer, V., I.J. Pickering, R.C. Prince, I. Raskin, D.E. Salt. 2000. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol. 122:1343-1353 

  49. Landsberg, E.C. 1981. Organic acid synthesis and release of hydrogen ions in response to Fe deficiency stress of mono- and dicotyledonous plant species. J. Plant Nutr. 3:579-591 

  50. Lasat, M.M., A. J. M. Baker, L.V. Kochian. 1996. Physiological characterisation of root $Zn^{2+}$ absorption and translocation to shoots in Zn hyperaccumulator and non-accumulator species of Thlaspi. Plant Physiol. 112: 1715-1722 

  51. Lee, J. R.K. Reeves, R.R. Brooks, T. Jaffre. 1978. The relation between nickel and citric acid in some nickel-accumulating plants. Phytochemistry 17:1033-1035 

  52. Li, S.F., J.F. Ma, H. Matsumoto. 2002. Aluminium-induced secretion of both citrate and malate in rye. Plant and Soil 242:235-243 

  53. Li, X.F., J.F. Ma, H. Matsumoto. 2000. Pattern of aluminiuminduced secretion of organic acids differs between rye and wheat. Plant Physiol. 123:1537-1543 

  54. Li, Y.H., B.X. Huang, X.Q. Shan. 2003. Determination of low molecular weight organic acids in soil, plants, and water by capillary zone electrophoresis. Anal. Bioanal.Chem. 375:775-780 

  55. Lombi, E., W.W. Wenzel, G.R. Gobran, D.C. Adriano. 2000. Dependency ofphytoavailability of metals on indigenous and induced rhizosphere processes: a review. p. 3-24. In G.R. Gobran, W.W. Wenzel, E. Lombi (ed.) Trace elements in the rhizosphere. Boca Raton, CRC press 

  56. Lombi, E., F-J. Zhao, M. Fuhrmann, L.Q. Ma, S.P. Mcgrath. 2002. Arsenic distribution and speciation in the fronds of the hyperaccumulator pteris vittata. New Phytol. 156:195-203 

  57. Luo, Y.M., P. Christie, A.J.M. Baker.2000. Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd-contaminated soil. Chemosphere 41(1-2):161-164 

  58. Mariano, E.D., R.A. Jorge, W.G. Keltjens, M. Menossi. 2005. Metabolism and root exudation of organic acid anions under aluminium stress. Toxic metals in plants 17(1): 157-172 

  59. Marschner, H. 1995. Mineral nutrition of higher plants. London, Academic press 

  60. McCully, M.E. 1999. Roots in soil: unearthing the complexities of roots and their rhizospheres. Annual Review of Plant Physiol, Plant MolecuI. Biology 50:695-718 

  61. McGrath, S.P., Z.G. Shen, F.J. Zhao. 1997. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant and Soil 188: 153-159 

  62. McLay, C. D. A. L Barton, C. Tang. 1997. Acidification potentialof ten grain legume species grown in nutrient solution. Aust. J. Agric. Res. 48: 1025-1032 

  63. Mench, M., E. Martin. 1991. Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L. Plant and Soil 132:187-196 

  64. Morel, J.L., L. Habib, S. Plantureaux, A. Guckert. 1991. Influence of maize root mucilage on soil aggregate stability. Plant and Soil 136:111-119 

  65. Morel, J.L., M. Mench, A. Guckert. 1986. Measurement of $Pb^{2+}, Cu^{2+}$ and $Cd^{2+} $ binding with mucilage exudates from maize (Zea mays L.) roots. BioI. Fertil, Soils 2:29-34 

  66. Nardi, S., G. Concheri, D. Pizzeghello, A. Sturaro, R. Rella, G. Parvoli. 2000. Soil organic matter mobilization for auxin transport and auxin-mediated development. Plant Cell 13:2441-2454 

  67. Nian, H., M.Y. Zheng, J.A. Sung, J.C. Zhi, H. Matsumoto. 2002. A comparative study on the aluminium- and copper-induced organic acid exudation from wheat roots. Physiol. Planta.116(3):328-335 

  68. Nigam, R., S. Srivastava, S. Parakash, M.M. Srivastava. 2001. Cadmium mobilisation and plant availability-the impact of organic acids commonly exuded from roots. Plant and Soil 230:107-113 

  69. Onyatta, J.O., P.M. Huang. 2003. Kinetics of cadmium release from selected tropical soils from Kenya by low-molecular-weight organic acid. Soil Sci. 168(4):234-252 

  70. Parker, D.R., J.P. Pedler. 1998. Probing the 'malate hypothesis' of differential aluminiumtolerance in wheat by using other rhizotoxic ions as proxies for AI. Planta. 205:389-396 

  71. Pelosi, P., R. Fiorentini, C. Galoppini. 1976. On the nature of nickel compounds in Alyssum bertolonii Desv-Il, Agr. BioI. Chem. 40:1641-1642 

  72. Qin, P., X-Q. Shan, B. Wei. 2004. Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere 57(4):253-263 

  73. Rovira, A.D. 1969. Plant root exudates. Bot. Rev. 35:33-57 

  74. Ryan, P.R., E. Delhaize, P.J. Randall. 1995. Malate efflux from root apices and tolerance to aluminium are highly correlated in wheat. Aust. J. Plant physiol, 22:351-536 

  75. Sagner, S., R. Kneer, G. Wanner, J.P. Gcosson, B. Deus-Neumann, M.H. Zenk. 1998. Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata. Phytochemistry 47:339-347 

  76. Salt, D.E., N. Kato, U.I.R. Kramer. 2000. The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi. p. 189-200. In N. Terry, G. Banuelos (ed.) Phytoremediation of contaminated soil and water. Boca Raton, CRC press 

  77. Salt, D.E., U. Kramer. 2000. Mechanisms of metal hyperaccumulation in plants. p. 231-246. In I. Raskin, B.D. Ensley (ed.) Phytoremediation of toxic metals. New York, a wileyinterscience publication 

  78. Salt, D.E., R.C. Prince, A. J. M. Baker, I. Raskin, I. J. Pickering. 1999. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ. Sci. Tech. 33:713-717 

  79. Sas, L., Z. Rengel, C. Tang. 2001. Excess cation uptake, and extrusion of protons and organic acid anions by Lupinus albus under phosphorus deficiency. Plant Sci. 160(6):1191-1198 

  80. Schmoger, M.E.V., M. Oven, E. Grill. 2000. Detoxification of arsenic by phytochelatins in plants. Plant Physiol. 122:793-801 

  81. Schwartz, C., J. L. Morel, S.E. Saumier, S.N. Whiting, A. J. M. Baker. 1999. Root development of the Zinc-hyperaccumulator plant Thlaspi caerulescens as affected by metal origin, content and localization in soil. Plant and Soil 208:103-115 

  82. Seden, M. H. M., H.T. Wolterbeek. 1990. Effect of citric acid on the transport of cadmiumthrough Xylem vessels of excises tomato stem-leaf systems. Acta Bio. Neet. 39:297-303 

  83. Shen, Z.G., F.J. Zhao, S.P. McGrath. 1997. Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the nonhyperaccumulator Thlaspi ochroleucum. Plant, Cell and Environ. 20:898-906 

  84. Stevenson, F.J. 1967. Organic acids in soils. p 119-146. In AD. McLaren, G.H. Peterson (ed.) Soil Biochem, vol. 1. New York, Marcel Dekker 

  85. Strobel, B.W.2001. Influence of vegetation on low-molecularweight carboxylic acids in soil solution-a review. Geoderma 99(34):169-198 

  86. Tang, C., C. D. A. McLay, L. Barton. 1997. A comparison of proton excretion of twelve pasture legumes grown in nutrient solution. Aust. J. Exp. Agric. 37:563-570 

  87. Uren, N. C., H.M. Reisenauer. 1988. The role of root exudates in nutrient acquisition. Advances in plant nutrient 3:79-114 

  88. Van Beusichem, M.L. 1981. Nutrient absorption by pea plants during dinitrogen fixation. J. comparison with nitrate nutrition. Neth. J. Agric. Sci. 29:259-273 

  89. Walker, T.S., H.P. Bais, E. Grotewold, J. M. Vivanco. 2003. Root exudation and rhizosphere biology. Plant PhysioL 132(1):44-51 

  90. Wenzel, W.W., M. Bunkowski, M. Puschenreiter, O. Horak. 2003. Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soiL Environ. Pollut.123(1):131-138 

  91. Wenzel, W.W., G. Wieshammer, W.J. Fitz, M. Puschenreiter, 2001. Novel rhizobox desigu to assess rhizosphere characteristics at high spatial resolution. Plant and Soil 237:37-45 

  92. White, M.C., R.L. Chaney, A.M. Decker. 1981. Metal complexation in xylem fluid. III Electrophoretic evidence. Plant Physiol. 67:311-315 

  93. Whiting, S.N., M.R. Broadley, P.J. White. 2003. Applying a solute transfer model to phytoextraction: Zinc acquisition by Thlaspi caerulescens. Plant and Soil 249(1):45-56 

  94. Whiting, S.N., J.R. Leake, S.P. McGrath, A.J.M. Baker. 2000. Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol. 145:199-210 

  95. Wu, L.H., Y.M. Luo, P. Christie, M.H. Wong. 2003. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere 50(6):819-822 

  96. Yang, Y.Y., J.Y. Jung, W.Y. Song, H.S. Suh, Y. Lee. 2001. Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol. 124:1019-1026 

  97. Zhao, F.J., E. Lombi, S.P. McGrath. 2003a. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil 249(1):37-43 

  98. Zhao, F.J., J.R. Wang, A.J.M. Barker, H. Schat, P.M. Bleeker, S.P. McGrath. 2003b. The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol. 159:403-410 

저자의 다른 논문 :

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로