$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

실내 미생물 입자 살균을 위한 광촉매 기술의 효율
Effectiveness of Photocatalytic Techniques for Disinfection of Indoor Bioaerosols 원문보기

한국환경과학회지 = Journal of the environmental sciences, v.16 no.7, 2007년, pp.785 - 791  

신승호 (Department of Environmental Engineering, Kyungpook National University) ,  김모근 (National Environment and Health Research Institute of Kyungpook Province) ,  조완근 (Department of Environmental Engineering, Kyungpook National University)

Abstract AI-Helper 아이콘AI-Helper

The current study evaluated the technical feasibility of the application of titanium dioxide ($TiO_{2}$) photo-catalytic air cleaners for the disinfection of bioaerosols present in indoor air. The evaluation included both laboratory and field tests and the tests of hydraulic diameter (HD)...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • For the laboratory experiment, two parameters (HD and LT) were tested for the PCO efficiencies of bioaerosol disinfection under four reactor conditions (an uncoated (no titania) reactor with turning UV lamp off, an uncoated reactor with turning UV lamp on, TiOz-coated reactor with UV lamp off, and TiOi-coated reactor with UV lamp on). Based on the laboratory experiment, the field experiment was conducted under two reactor conditions 0이y (Ti02-coated reactor with UV lamp off and TiO2-coated reactor with UV lamp on). Three HDs (5.
  • The laboratory test focuses on total bacteria and total fungi, while the flower garden test focuses on four major fungal species (Aspergillus, Alternaria, Cladosporium, and Penicillium) as well as total bacteria and t이al fungi. Contrast to the total bacterial and total fungal tests which examined two parameters (HD and LT) for disinfection efficiency, the fungal species tests were conducted to examine the LT effects only, by fixing HD to 20 mm. Laboratory or flower garden indoor air stream was drawn to the PCO reactor, and the bioaerosol samples were collected at the PCO reactor inlet prior to and outlet one hour after operating the PCO reactor.
  • These two environments were selected to maximize the concentration range of bioaerosols at inlet of the PCOI8). For the laboratory experiment, two parameters (HD and LT) were tested for the PCO efficiencies of bioaerosol disinfection under four reactor conditions (an uncoated (no titania) reactor with turning UV lamp off, an uncoated reactor with turning UV lamp on, TiOz-coated reactor with UV lamp off, and TiOi-coated reactor with UV lamp on). Based on the laboratory experiment, the field experiment was conducted under two reactor conditions 0이y (Ti02-coated reactor with UV lamp off and TiO2-coated reactor with UV lamp on).
  • The evaluation included both laboratory and field tests and the tests of hydraulic diameter (HD) and lamp type (LT). The effect of HD on photocatalytic oxidation (PCO) destruction efficiency was tested since UV intensity on the reactor surface is an important parameter15* and varies with the HD of the PCO reactor for an identical UV lamp.

대상 데이터

  • 1. The PCO reactors used in this investigation had annular geometries. The reactor consisted of a Pyrex tube coated on the inner surface with a thin film of the TiO? photocatalyst (20% Degussa P-25 slurry).
  • The PCO reactors used in this investigation had annular geometries. The reactor consisted of a Pyrex tube coated on the inner surface with a thin film of the TiO? photocatalyst (20% Degussa P-25 slurry). The coated reactor is dried for an hour at room temperature and baked for 30 min at 450 ℃.
  • Based on the laboratory experiment, the field experiment was conducted under two reactor conditions 0이y (Ti02-coated reactor with UV lamp off and TiO2-coated reactor with UV lamp on). Three HDs (5.0, 20, and 45 mm) were tested using two lamps (germicidal and fluorescent lamps. The UV radiation is supplied by an 4-W germicide lamp (SANKYO DENKI, F40T8GL) or an 8-W fluorescent black light (SANKYO DENKI F8T5/BLB) with a maximum spectral intensity at 352 nm.
  • Three reactors with different HDs (5, 20, and 45 mm) were tested as regards the PCO efficiencies for bioaerosols. Table 1 displays the removal efficiencies for bacteria obtained from a university laboratory.
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. Pastuszka J. S., U. Kyaw Tha Paw D. O., Wlazlo L. A., Ulfig K., 2000, Bacterial and fungal aerosol in indoor environment in Upper Silesia, Poland, Atmos. Environ., 34, 3833-3842 

  2. Gorny R. L., Dutkiewicz J., 2002, Bacterial and fungal aerosols in indoor environment in Central and Eastern European countries, Ann. Agr. Env. Med, 9, 17-23 

  3. Jones A. M, Harrison R. M., 2004, The effects of meteorological factors on atmospheric bio-aerosol concentrations, Sci. Tot. Environ, 326, 151-180 

  4. Beaumont F., 1988, Clinical manifestations of pulmonary Aspergillus infections, Mycoses, 31, 15-20 

  5. Siersted H. C., Gravesen S., 1993, Extrinsic allergic alveolitis after exposure to the yeast Ehodotorula rubra, Allergy, 48, 298-299 

  6. Dales R. E., Zwanenburg H., Burnett R., Franklin C. A., 1991, Respiratory health effects of home dampness and molds among children. Am. J. Epidemiol, 134, 196-203 

  7. Ren P., Jankun T. M., Belanger K., Bracken M. B., Leaderer B. P., 2001, The relation between fungal propagules in indoor air and home characteristics, Allergy 56, 419-424 

  8. Mills A., Hunte Le., 1997, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A: Chem., 108, 1-35 

  9. Sunada K., Kikuchi Y., Hashimoto, K., Fujishima A., 1998, Bactericidal and detoxification effects of $TiO_2$ thin film photocatalysis. Environ. Sci. Technol, 32, 726-728 

  10. McLoughlin O. A., Fernandez Ibanez P., Gernjak W., Malato Rodriguez S., Gill L. W, 2004, Photocatalytic disinfection of water using low cost compound parabolic collectors, Solar Ener, 77, 625-632 

  11. Fernandez P., Blanco J., Sichel C., Malato S., 2005, Water disinfection by solar photocatalysis using compound parabolic collectors, Catal. Today, 101, 345-352 

  12. Rincon A.-G., Pulgarin C., 2005, Use of coaxial photocatalytic reactor (CAPHORE) in the $TiO_2$ photo-assisted treatment of mixed E. coli and Bacillus sp. and bacterial community present in wastewater, Catal. Today, 101, 331-344 

  13. Blake D. M., 2001, Biography of Work on the Photocatalytic Removal of Hazardous Compounds from Water and Air. Update Number 4, to October 2001, NREL/TP-510-31319. Golden CO: National Renewable Energy Laboratory, 272 pp 

  14. Jacoby W. A., Maness P. C., Wolfram E. J., Blake D. M., Fennell J. A., 1998, Mineralization of bacterial cell mass on a photocatalytic surface in air, Environ. Sci. Technol, 32, 2650-2653 

  15. Stevens L., Lanning J. A., Anderson L. G., Jacoby W. A., Chornet N., 1998, Investigation of the photocatalytic oxidation of low-level carbonyl compounds, J. Air Waste Manage, 48, 979-984 

  16. Kim B., Kim D., Cho D., Cho S., 2003, Bactericidal effect of $TiO_2$ photocatalyst on selected food-borne pathogenic bacteria, Chemosphere, 52, 277-281 

  17. Jo W. K., Park K. H., 2004, Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application, Chemosphere 57, 555-565 

  18. Jo W. K., Kang J. H., 2006, Workplace Exposure to Bioaerosols in Pet Shops, Pet Clinics, and Flower Gardens, Chemosphere, 65, 1755-1761 

  19. Nevalainen A., Pastuszka J., Liebhaber F., Willeke K, 1992, Performance of bioaerosol samplers: collection characteristics and sampler design considerations, Atmos. Environ, 26A, 531-540 

  20. Atlas R. M., Bartha R., 1981, Microbial Ecology: Fundamentals and Applications. Addison-Wesley Publishing Company, Reading-Sydney 

  21. Ko G., First M. W., Burge H. A., 2002, The characterization of upper-room ultraviolet germicidal irradiation in inactivating airborne microorganisms. Eneviron. Heal. Persp, 110, 95-101 

  22. Beggs C. B., Sleigh P. A., 2002, A quantitative method for evaluating the germicidal effect of upper room UV fields. J. Aerosol Sci, 33 1681-1699 

  23. Xu P., Peccia J., Fabian P., Martyny J. W., Fennelly K. P., Hernandez M., Miller S. L., 2003, Efficacy of ultraviolet germicidal irradiation of upper-room air in inactivating airborne bacterial spores and mycobacteria in full-scale studies. Atmos. Environ., 37, 405-419 

  24. Obee T. N., Brown R., 1995, $TiO_2$ photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene, Environ. Sci. Technol., 29, 1223-1231 

  25. Douwes J., Thorne P., Pearce N., Heederik D., 2003, Bioaerosol health effects and exposure assessment: progress and prospects, Ann. Occup. Hyg., 47, 187-200 

  26. Ostro B., Lipsett M., Mann J., Braxton-Owens H., White M., 2001, Air pollution and exacerbation of asthma in African-American children in Los Angeles, Epidemiology, 12, 200-208 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로