$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

메모리 기반 추론 기법에 기반한 점진적 다분할평균 알고리즘

An Incremental Multi Partition Averaging Algorithm Based on Memory Based Reasoning

초록

패턴 분류에 많이 사용되는 기법 중의 하나인 메모리 기반 추론 알고리즘은 단순히 메모리에 저장하고 분류 시에 저장된 패턴과 테스트 패턴간의 거리를 계산하여 가장 가까운 학습패턴의 클래스로 분류하는 기법이기 때문에 패턴의 개수가 늘어나면 메모리가 증가하고 또한 추가로 패턴이 발생할 경우 처음부터 다시 수행해야하는 문제점을 가지고 있다. 이러한 문제점을 해결하기 위하여 이미 학습한 대표패턴을 기억하고 새로 들어오는 패턴에 대해서만 학습하는 점진적 학습 방법을 제안한다. 즉 추가로 학습패턴이 발생할 경우 매번 전체 학습 패턴을 다시 학습하는 것이 아니라, 새로 추가된 데이터만을 학습하여 대표패턴을 추출하여 메모리사용을 줄이는 iMPA(incremental Multi Partition Averaging)기법을 제안하였다. 본 논문에서 제안한 기법은 대표적인 메모리기반 추론 기법인 k-NN 기법과 비교하여 현저하게 줄어든 대표패턴으로 유사한 분류 성능을 보여주며, 점진적 특성을 지닌 NGE 이론을 구현한 EACH 시스템과 점진적인 실험에서도 탁월한 분류 성능을 보여준다.

Abstract

One of the popular methods used for pattern classification is the MBR (Memory-Based Reasoning) algorithm. Since it simply computes distances between a test pattern and training patterns or hyperplanes stored in memory, and then assigns the class of the nearest training pattern, it is notorious for memory usage and can't learn additional information from new data. In order to overcome this problem, we propose an incremental learning algorithm (iMPA). iMPA divides the entire pattern space into fixed number partitions, and generates representatives from each partition. Also, due to the fact that it can not learn additional information from new data, we present iMPA which can learn additional information from new data and not require access to the original data, used to train. Proposed methods have been successfully shown to exhibit comparable performance to k-NN with a lot less number of patterns and better result than EACH system which implements the NGE theory using benchmark data sets from UCI Machine Learning Repository.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일