$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

한국 중부 서해안 경기만 일대 3개 간척지의 토양 염농도와 식생의 연속분포

Soil Salinity and Continuum Distribution of Vegetation on the Three Reclaimed Tidal Flats of Kyonggi-Bay in the Mid-West Coast of Korea

초록

간척지에서 식생의 분포에 대한 평가는 토양관리 및 환경적 연구를 위해 필요하다. 본 연구는 한국 중부 서해안 경기만 내의 3개 간척지에서 식생의 분포와 토양 염농도 간의 관계를 규명하기 위하여 실시하였다. 식생이 연속분포를 보이는 지점에서 토양 염농도를 측정하고 출현식물종을 분류하여 연속분포의 특성을 기술하였다. 간척지 내에 나타나는 식생의 공간변이는 부분적으로 이루어지지만 각각의 공간변이를 토양 염농도를 기준으로 연결한 결과 토양 염농도 구배와 내염성 식물종의 분포가 일치하는 연속분포(continuum distribution)를 보여, 토양 염농도가 높은 곳은 내염성 식물종이, 낮은 곳은 비내염성 식물종이 분포하였다. 연속분포는 간척 경과 년 수가 오래된 곳에서 유형이 다양하고 명확하게 구분되나, 간척 초기 지역에서는 연속분포 현상이 뚜렷하지 않았다. 연속분포 유형은 순차적 유형과 비순차적 유형으로 구분되었다. 순차적 유형은 토양 염농도가 높은 곳을 기점으로 할 경우 토양 염농도가 연속적으로 낮아지는 방향으로 이어지며 식물종도 이에 따라 선구종 염생식물(pioneer halophyte)에서 저염생식물(facultative halophyte), 중성식물(glycophyte)의 순으로 변화하였다. 비순차적 유형은 비연속적 토양 염농도의 변화에 의해 형성되며, 식생의 분포도 단계적 변화를 보이지 않고 비정형적이다. 간척 경과 년 수가 오래된 지역에서는 토양 염농도가 높은 식생 고사지역이 있고 식생 비분포지와 함께 이 지점을 기점으로 식생의 연속분포가 형성되었다.

Abstract

Assessing for flora distribution is necessary for land management and environmental research in reclaimed lands. This study was conducted to find out the relationship between vegetation distribution and soil salinity on three reclaimed tidal flats of Kyonggi-bay in the mid-west coast of Korea. We investigated the soil salinity and identified the vegetation at the continuum distribution spots, and describe the characteristics of continuum distribution. On the reclaimed tidal flats, spatial variation of vegetation formed partially, however as the result for connection of each spatial variation along with the soil salinity, continuum distribution formed and it was overlapped edaphic gradient with vegetation distribution, it means that the continuum distribution correspond with soil salinity gradient, as the evidence high salt tolerance species occurred at high saline spots, non salt tolerance species occurred at low saline spots. On the aged reclaimed tidal flats, continuum type was various and also clearly distinguished but it was not clear on the early stage of reclamation. The continuum distribution distinguished sequential and non-sequential type. Sequential type started from high saline zone and connected to low saline zone gradually, on this type, vegetation changed from pioneer halophyte to facultative halophyte and glycophyte along with the salinity gradient. Non-sequential type formed by non-sequential change of soil salinity, on this type, vegetation distribution was non-regular form because it has not changed gradually. In the aged reclaimed land, vegetation wilted zone existed with high salinity, and continuum distribution started from this zone with bare patch.

참고문헌 (63)

  1. Bertness, M. D. 1991a. Interspecific interactions among high marsh perennials in a New England salt marsh. Ecol. 72: 125-137. 
  2. Bertness, M. D. 1991b. Zonation of Spartina patens and Spartina alterniflora in a New England salt marsh. Ecol. 72: 138-148. 
  3. Bonis, A., J. B. Bouzille, B. Amiaud, and G. Loucougaray. 2005. Plant community patterns in old embanked grasslands and the survival of halophytic flora. Flora 200: 74-87. 
  4. Bouzillé, J. B., E. Kerneis, A. Bonis, and B. Touzard. 2001. Vegetation and ecological gradients in abandoned salt pans in western France. J. Vege. Sci. 12: 269-278. 
  5. Cooper, A. 1982. The effects of salinity and waterlogging on the growth and cation uptake of salt marsh plants. New Phytologist 90: 263-275. 
  6. Culberson, S. D. 2001. The interaction of physical and biological determinants producing vegetation zonation in tidal mashes of the San Francisco Bay Estuary, California, USA. Ph.D. dissertation, University of California, Ecology. 
  7. Ellison, A. M. 1987. Effects of competition, disturbance, and herbivory on Salicornia europaea. Ecol. 68: 576-586. 
  8. Deeter, L. M. 2002. Sodium chloride tolerance of selected herbaceous perennials and the effects of sodium chloride on osmotic adjustment and ionic uptake in three species of herbaceous perennials. p. 28. Ph. D. dissertation, Ohio State University. 
  9. Joenje, W. 1974. Production and structure in the early stages of vegetation development in the Lauwerszee-poder. Vegetatio 29: 101-108. 
  10. Jeonje, W., and H. J. During. 1977. Colonisation of a desalination Waddenpolder by byrophyte. Vegetatio 35: 177-185. 
  11. Joenje, W. 1979. Plant succession and nature conservation of newly embanked tidal flats in the Lawerszeepolder. p. 617-634. In Jefferies, R. L. and A. J. Davy. eds. Ecological process in coastal environments. Blackwell, Oxford. 
  12. Kravchenko, A. N., C. W. Boast, and D. G. Bullock. 1999. Multifractal analysis of soil spatial variability. Agro. J. 91: 1033- 1041. 
  13. Kwon, H. J., W. I. Chung, and J. Y. Cho. 1983. Studies on the variation of vegetation and rice root formation accompanied with the desaltation at the reclaimed tidal fields. Korean J. Crop Sci. 28(3): 305-309. 
  14. Lee, B. M., S. I. Shim, S. G. Lee, B. H. Kang, I. M. Chung, and K. H. Kim . 1999. Physiological response on saline tolerance between halophytes and glycophytes. Korean J. Environ. Agri. 18(1): 61-65. 
  15. Lee, K. B., J. G. Kang, J. Li, D. B. Lee, C. W. Park, and J. D. Kim. 2007. Evaluation of salt-tolerance plant for improving saline soil of reclaimed land. Korean J. Soil Sci. Fert. 40(3): 173-180. 
  16. Mahall, B. E. and R. B. Park. 1976a. The ecotone between Spartina foliosa Trin. and Salicornia virginica L. in salt marshes of northern San Francisco Bay. II. Soil water and salinity. J. Ecol. 64: 793- 809. 
  17. Noordwijk-Puijk, K. V., W. G. Beeftink, and P. Hogeweg. 1979. Vegetation development on salt-marsh flats after disappearance of the tidal factor. Vegetatio 39: 1-13. 
  18. Park, S. H. 2001. Foreign Naturalized plant of Korea. Dae-Won Publishing Co., Seoul. 
  19. Silvestri, S., A. Defina, and M. Marani. 2005. Tidal regime, salinity and salt marsh plant zonation. Estuarine Coastal and Shelf Science 62: 119-130. 
  20. Noy-Meir, I. and E. Van der Maarel. 1987. Relations between community theory and community analysis in vegetation science: some historical perspectives. Vegetatio 69: 5-15. 
  21. Vince, S. W. and A. A. Snow. 1984. Plant zonation in an Alaskan slat marsh. I. Distribution, abundance, and environmental factors. J. Ecol. 72: 651-667. 
  22. Armstrong, A. C. 1986. On the fractal dimension of some transient soil properties. Soil. Sci. Soc. Am. J. 37: 641-652. 
  23. Austin, M. P. 1985. Continuum concept, ordination methods and niche theory. Ann. Rev. Ecol. Syste. 16: 39-61. 
  24. Burrough, P. A. 1983b. Multiscale sources of spatial variation in soil: II. A non-Brownian fractal model and its application in soil. Soil. Sci. Soc. Am. J. 34: 599-620. 
  25. Eghabll, B., L. N. Mielke, G. A. Calvo, and W. W. Wilhelm. 1993. Fractal description of soil fragmentation for various tillage methods and crop sequences. Soil. Sci. Soc. Am. J. 57: 1337-1341. 
  26. Lee, S. H, Y. An, S. H. Yoo, and S. M. Lee. 2000. Changes in early stage vegetation succession as affected desalinization process in Dae-Ho reclaimed land. Korean J. Environ Agri. 19(4): 364-369. 
  27. Clarke, L. D., and N. J. Hannon. 1970. The mangrove swamp and salt marsh communities of the Sydney district. III. Plant growth in relation to salinity and waterlogging. J. Ecol. 58: 351-369. 
  28. Hong, S. W., Y. C. Hah, and Y. K. Choi. 1969. Biologcal improvement of reclaimed tidal land(I), Desalination effects of saline soil by the growth of certain halophytes. Korean J. Botany 12(1): 7-14. 
  29. Min, B. M. and J. H. Kim. 1997. Soil texture and desalination after land reclamation on the west coast of Korea. Korean J. Ecol. 20(2): 133-143. 
  30. Kim, C. S. 1983. Distribution of halophyte community. Nature conservation 41: 31-36. 
  31. Kim, D. Y. and J. S. Lee. 1983a. Ecological studies on the halophyte community of the coast.II. On the salt marsh of Cheongha. p. 409-416. Gunsan National University. 
  32. Tran, T. S. and R. R. Simard. 1993. Mehlich III-Extractable Elements. p. 43-49. In Carter, M. R. ed. Soil sampling and methods of analysis. Lewis Publishers, London. 
  33. Olff, H., J. De Leeuw, J. P. Bakker, R. J. Platerink, H. J. Van Wijnen, and W. De Munck. 1997. Vegetation succession and herbivory in a salt marsh: changes induced by sea level rise and silt deposition along an elevational gradient. J. Ecol. 85: 799-814. 
  34. USDA-ARS George E. Brown, Jr. Salinity Lab. 1999. Halophyte database salt-tolerance plants and their uses. USDA ARS by N.P. Yensen http://www.ussl.ars.usda.gov/pls/caliche/halophyte.preface 
  35. Burrough, P. A. 1983a. Multiscale sources of spatial variation in soil: I. The application of fractal concepts to nested levels of soil variation. Soil. Sci. Soc. Am. J. 34: 577-597. 
  36. Bertness, M. D. and S. M. Yeh. 1994. Cooperative and competitive interactions in the recruitment on marsh elders. Ecol. 75(8): 2416- 2429. 
  37. Ihm, B. S. 2001. Distribution of halophytes on the south coast of Korea. Nature Conservation 116: 9-14. 
  38. Lee, Y. N. 2002. Flora of Korea. Kyo-Hak Publishing Co., Ltd., Seoul. 
  39. Mahall, B. E. and R. B. Park. 1976b. The ecotone between Spartina foliosa Trin. and Salicornia virginica L. in salt marshes of northern San Francisco Bay. III. Soil aeration and tidal immersion. J. Ecol. 64: 811-819. 
  40. Park, S. H. 2001. Colored Illustrations of Naturalized Plants of Korea. Ilchokak Co., Seoul. 
  41. Zhao, K., F. Hai, and I. A. Ungar. 2002. Survey of halophyte species in China. Plant Sci. 163(3): 491-498. 
  42. Jung, Y. S., W. H. Lee, J. H. Joo, I. H. Yu, W. S. Shin, Y. Ahn, and S. H. Yoo. 2003. Use of electromagnetic inductance for salinity measurement in reclaimed saline land. Korean J. Soil Sci. Fert. 36(2): 57-65. 
  43. Lee, T. B. 1999. Illustrated flora of Korea. Hayng-Moon Publishing Co., Seoul. 
  44. Sheldrick, B. H. and C. Wang. 1993. Particle Size Distribution. p. 499-511. In Carter, M. R. ed. Soil sampling and methods of analysis. Lewis Publishers, London. 
  45. Westhoff, V. and K. V. Sykora. 1979. A study of the influence of desalination of the Juncetum gerardii. Acta Botanica Neerlandica 28: 505-512. 
  46. US Salinity Laboratory Staff. 1954. Diagnosis and improvement of Saline and alkali soils. USDA Handbook No. 60. 
  47. Metcalfe, W. S., A. M. Ellison, and M. D. Brtness. 1986. Survivorship and spatial development of Spartina alterniflora Loisel. (Gramineae) seedlings in a New England salt marsh. Ann. Botany 58: 249-258. 
  48. Patten, R. S. and J. E. Ellis. 1995. Patterns of species and community distributions related to environmental gradients in an arid tropical ecosystem. Vegetatio 117: 69-79. 
  49. Sanderson, E. W., S. L. Ustin, and T. C. Foin. 2000. The influence of tidal channels on the distribution of salt marsh plant species in Petaluma Marsh, CA, USA. Plant Ecol. 146: 29-41. 
  50. Austin, M. P. and T. M. Smith. 1989. A new model for the continuum concept. Vegetatio 83: 35-47. 
  51. Min, B. M. 1985. Changes of soil and vegetation in costal reclaimed lands, west coast of Korea. Seoul National University, Ph. D. dissertation, Department of Botany. 
  52. Park, I. K. 1969. A study of continuum of the salt plant communities in the Juan coastal area. Graduate School of Education, Seoul National University, Master thesis, Department of Biology Education. 
  53. Shumway, S. W. and M. D. Bertness. 1992. Salt stress limitation of seedling recruitment in a salt marsh plant community. Oecologia 92: 490-497. 
  54. Adams, D. A. 1963. Factors influencing vascular plant zonation in North Carolina salt marshes. Ecol. 44(3): 445-456. 
  55. De Jong, S. M. and P. A. Burrough. 1995. A fractal approach to the classification of Mediterranean vegetation types in remotely sensed images. Photogramm Engineeging Remote Senssing 61: 1041-1053. 
  56. Kim, D. Y. and J. S. Lee. 1983b. Ecological studies on the halophyte community of the coast.II. On the reclaimed tidal flat land of Naichodo Ri. p. 399-407. Gunsan National University. 
  57. Gravesen, P. 1972. Plant communities of salt-marsh origin at Tipperne, Western Jutland. Botanisk Tidsskrift 67: 1-32. 
  58. Callaway, R. M., S. Jones, W. R. Ferren, Jr., and A. Parikh. 1990. Ecology of a mediterranean-climate estuarine wet-land at Carpinteria, California: plant distributions and soil salinity in the upper marsh. Can. J. Botany 69: 1139-1146. 
  59. Armstrong, W., E. J. Wright, S. Lythe, and T. J. Gaynard. 1985. Plant zonation and effects of the spring-neap tidal cycle on soil aeration in a Humber salt marsh. J. Ecol. 73: 323-339. 
  60. Kang, B. H., and S. I. Shim. 1998. Screening of tolerant plants and development of biological monitoring technique for saline stress. I. Survey of vegetation in saline region and determination of saline tolerance of the plant species of the region. Korean J. Environ. Agri. 17(1): 26-33. 
  61. Penninos, S. C. and R. M. Callaway. 1992. Salt marsh plant zonation: The relative importance and physical factors. Ecol. 73(2): 681-690. 
  62. Lee, J. Y., J. O. Guh, H. S. Chang, and S. H. Bae. 1983. Weed distribution and its plant sociological aspects on the polder land. Korean J. Weed Sci. 4(2): 135-142. 
  63. Kim, C. S. 1971. An ecological study on the process of plant community formation in tidal land. Korean J. Botany 14(4): 27-33. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일