$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

To examine their potential as probiotics, acid and bile tolerance, antibiotics resistance, adhesion capacity to Caco-2 and HT-29, and antibacterial activity, of LAB isolated from Korean fermented foods such. as dongchimi, kimchi, Meju, and doenjang were assayed against foodborne pathogenic bacteria....

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • To investigate bacteriocin production by the four strains, we prepared crude bacteriocin of the strains and examined their antibacterial activity using the microtiter plate assay. Among the strains, KC 21 and KC 24 produced bacteriocinlike substance, but DC 55 and MJ 301 did not suggesting that the antibacterial activities of the KC 21 and KC 24 strains were due to both organic acids and bacteriocin-like inhibitory substances.

대상 데이터

  • monocytogenes KCTC 3569 by coculture experiments with the LAB. All foodbome pathogens were obtained from the ATCC (American Type Culture Collection) and KCTC (Korean Collection for Type Culture), and propagated in BHI broth at 37℃ under aerobic conditions. All the LAB were g-own overnight in MRS broth, and then the LAB as well as foodbome pathogens were centrifuged for 10 min at 7, 000 xg and washed twice with PBS (pH 7.

이론/모형

  • ) and kept at -20℃. Antibiotic resistance testing by Minimal Inhibitory Concentration (MIC), which was defined as the smallest amount of antibiotic needed to totally inhibit the growth of the bacteria after incubation for 48 h, was determined by the disk diffusion method [5] with the following modifications. Each LAB tested was incubated overnight at 37℃ in MRS broth and adjusted to approximately l><108 CFU/ml, equivalent to an absorbance reading at 600 nm of 0.
본문요약 정보가 도움이 되었나요?

참고문헌 (66)

  1. Ammor, M. S., A. B. Florez, A. H. van Hoek, C. G. de Los Reyes-Gavilan, H. J. Aarts, A. Margolles, and B. Mayo. 2008. Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. J. Mol. Microbiol. Biotechnol. 14: 6-15 

  2. Arici, M., B. Bilgin, O. Sagdic, and C. Ozdemir. 2004. Some characteristics of Lactobacillus isolates from infant faeces. Food Microbiol. 21: 19-24 

  3. Aysun, C. and G. Candan. 2003. Properties of potential probiotic Lactobacillus plantarum strains. Food Microbiol. 20: 511-518 

  4. Baccigalupi, L., A. Di Donato, M. Parlato, D. Luongo, V. Carbone, M. Rossi, E. Ricca, and M. De Felice. 2005. Small surface-associated factors mediate adhesion of a food-isolated strain of Lactobacillus fermentum to Caco-2 cells. Res. Microbiol. 156: 830-836 

  5. Bauer, A. W., W. M. M. Kirby, J. C. Sherris, and M. Turk. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45: 493-496 

  6. Bernet, M. F., D. Brassart, J. R. Neeser, and A. L. Servin. 1994. Lactobacillus acidophilus LA1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut 35: 483-489 

  7. Bujalance, C., E. Moreno, M. Jimenez-Valera, and A. Ruiz- Bravo. 2007. A probiotic strain of Lactobacillus plantarum stimulates lymphocyte responses in immunologically intact and immunocompromised mice. Int. J. Food Microbiol. 113: 28-34 

  8. Coconnier, M. H., M. F. Bernet, S. Kerneis, G. Chauviere, J. Fourniat, and A. L. Servin. 1993. Inhibition of adhesion of enteroinvasive pathogens to human intestinal Caco-2 cells by Lactobacillus acidophilus strain LB decreases bacterial invasion. FEMS Microbiol. Lett. 110: 299-306 

  9. Coconnier, M. H., V. Lievin, M. F. Bernet-Camard, S. Hudault, and A. L. Servin. 1997. Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB. Antimicrob. Agents Chemother. 41: 1046-1052 

  10. D'Aimmo, M. R., M. Modesto, and B. Biavati. 2007. Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. isolated from dairy and pharmaceutical products. Int. J. Food Microbiol. 115: 35-42 

  11. Danielsen, M. 2002. Characterization of the tetracycline resistance plasmid pMD 5057 from Lactobacillus plantarum 5057 reveals a composite structure. Plasmid 48: 98-103 

  12. Danielsen, M. and A. Wind. 2003. Susceptibility of Lactobacillus spp. to antimicrobial agents. Int. J. Food Microbiol. 82: 1-11 

  13. Ding, W. H. and N. P. Shah. 2007. Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. J. Food Sci. 72: 446-450 

  14. Dunne, C., L. O'Mahony, L. Murphy, G. Thornton, D. Morrissey, S. O'Halloran, et al. 2001. In vitro selection criteria for probiotic bacteria of human origin: Correlation with in vivo findings. Am. J. Clin. Nutr. 73: 386S-392S 

  15. Elliot, S. N., A. Buret, W. McKnight, M. J. S. Miller, and J. L. Wallace. 1998. Bacteria rapidly colonize and modulate healing of gastric ulcers in rats. Am. J. Physiol. 275: G425-G432 

  16. Forestier, C., C. de Champs, C. Vatoux, and B. Joly. 2001. Probiotic activities of Lactobacillus casei rhamnosus: In vitro adherence to intestinal cells and antimicrobial properties. Res. Microbiol. 152: 167-173 

  17. Fuller, R. 1988. Probiotics in man and animals. J. Appl. Bacteriol. 66: 365-371 

  18. Garofalo, C., C. Vignaroli, G. Zandri, L. Aquilanti, D. Bordoni, A. Osimani, F. Clementi, and F. Biavasco. 2007. Direct detection of antibiotic resistance genes in specimens of chicken and pork meat. Int. J. Food Microbiol. 113: 75-83 

  19. Gevers, D., M. Danielsen, G. Huys, and J. Swings. 2003. Molecular characterization of tet(M) genes in Lactobacillus isolates from different types of fermented dry sausage. Appl. Environ. Microbiol. 69: 1270-1275 

  20. Granato, D., F. Perotti, I. Masserey, M. Rouvet, M. Golliard, A. Servin, and D. Brassart. 1999. Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl. Environ. Microb. 62: 1071-1077 

  21. Heller, K. J. 2001. Probiotic bacteria in fermented foods: Product characteristics and starter organisms. Am. J. Clin. Nutr. 73: 374-379 

  22. Hernandez, D., E. Cardell, and V. Zarate. 2005. Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: Initial characterization of plantaricin TF711, a bacteriocin-like substance produced by Lactobacillus plantarum TF711. J. Appl. Microbiol. 99: 77-84 

  23. Holo, H., O. Nilssen, and I. F. Nes. 1991. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: Isolation and characterization of the protein and its gene. J. Bacteriol. 173: 3879-3887 

  24. Hyronimus, B., C. Le Marrec, A. H. Sassi, and A. Deschamps. 2000. Acid and bile tolerance of spore-forming lactic acid bacteria. Int. J. Food Microbiol. 61: 193-197 

  25. Kankaanpaa, P., E. M. Tuomola, H. El-Nezami, J. Ahokas, and S. J. Salminen. 2000. Binding of aflatoxin B1 alters the adhesion properties of Lactobacillus rhamnosus strain GG in a Caco-2 model. J. Food Prot. 63: 412-414 

  26. Kastner, S., V. Perreten, H. Bleuler, G. Hugenschmidt, C. Lacroix, and L. Meile. 2006. Antibiotic susceptibility patterns and resistance genes of starter cultures and probiotic bacteria used in food. Syst. Appl. Microbiol. 29: 145-155 

  27. Khan, S. H. and F. A. Ansari. 2007. Probiotics - the friendly bacteria with market potential in global market. Pak. J. Pharm. Sci. 20: 76-82 

  28. Kim, W. J., D. M. Ha, and B. Ray. 1991. Characteristics of bacteriocin and mucin production phenotypes in Lactobacillus plantarum 27. J. Microbiol. Biotechnol. 1: 96-101 

  29. Kim, W. J., S. S. Hong, and S. K. Cha. 1994. Selection of human-originated Lactobacillus acidophilus for production of probiotics. J. Microbiol. Biotechnol. 4: 151-154 

  30. Klaenhammer, T. R. and M. J. Kullen. 1999. Selection and design of probiotics. Int. J. Food Microbiol. 50: 45-57 

  31. Kumura, H., Y. Tanoue, M. Tsukahara, T. Tanaka, and K. Shimazaki. 2004. Screening of dairy yeast strains for probiotic applications. J. Dairy Sci. 87: 4050-4056 

  32. Lakhtin, V. M., V. A. Aleshkin, M. V. Lakhtin, S. S. Afanas'ev, V. V. Pospelova, and B. A. Shenderov. 2006. Lectins, adhesins, and lectin-like substances of lactobacilli and bifidobacteria. Vestn. Ros. Akad. Med. Nauk. 1: 28-34 

  33. Lee, J. Y., Y. S. Park, N. Y. Lee, and D. H. Shin. 2002. Growth inhibition of some food-borne microorganisms by lactic acid bacteria isolated from feces of newborn baby and from donchimi. Food Sci. Biotechnol. 11: 448-456 

  34. Li, J., A. A. Aroutcheva, S. Faro, and M. L. Chikindas. 2005. Mode of action of lactocin 160, a bacteriocin from vaginal Lactobacillus rhamnosus. Infect. Dis. Obstet. Gynecol. 13: 135- 140 

  35. Lindgren, S. E. and W. J. Dobrogosz. 1990. Antagonistic activities of lactic acid bacteria in food and feed fermentation. FEMS Microbiol. Rev. 7: 149-163 

  36. Liong, M. T. and N. P. Shah. 2005. Acid and bile tolerance and cholesterol removal ability of Lactobacilli strains. J. Dairy Sci. 88: 55-66 

  37. Logan, A. C. and M. Katzman. 2005. Major depressive disorder: Probiotics may be an adjuvant therapy. Med. Hypotheses 64: 533-538 

  38. Mahony, D. E. 1982. A simple device for growing Clostridium perfringens and its application in bacteriocin studies. Can. J. Microbiol. 28: 709-713 

  39. Masco, L., C. Crockaert, K. van Hoorde, J. Swings, and G. Huys. 2007. In vitro assessment of the gastrointestinal transit tolerance of taxonomic reference strains from human origin and probiotic product isolates of Bifidobacterium. J. Dairy Sci. 90: 3572-3578 

  40. Mathur, S. and R. Singh. 2005. Antibiotic resistance in food lactic acid bacteria - a review. Int. J. Food Microbiol. 105: 281-295 

  41. Mattila-Sandholm, T., P. Myllarinen, R. Crittenden, G. Mogensen, R. Fonden, and M. Saarela. 2002. Technological challenges for future probiotic foods. Int. Dairy J. 12: 173-183 

  42. Mercenier, A., S. Pavan, and B. Pot. 2002. Probiotics as biotherapeutic agents: Present knowledge and future prospects. Curr. Pharm. Design 8: 99-110 

  43. Meyer, A. L., I. Elmadfa, I. Herbacek, and M. Micksche. 2007. Probiotics, as well as conventional yogurt, can enhance the stimulated production of proinflammatory cytokines. J. Hum. Nutr. Diet 20: 590-598 

  44. Moellering, R. C., J. R. Graybill, J. E. McGowan, and L. Corey. 2007. Antimicrobial resistance prevention initiative - an update: Proceedings of an expert panel on resistance. Am. J. Infect. Control 35: S1-S23 

  45. Montville, T. J. and Y. Chen. 1998. Mechanistic action of pediocin and nisin: Recent progress and unresolved questions. Appl. Microbiol. Biotechnol. 50: 511-519 

  46. Mundt, J. O. 1986. Lactobacillus, pp. 577-592. In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (eds.). Bergey's Manual of Systematic Bacteriology, Williams & Wilkins, Baltimore, MD, U.S.A 

  47. Nemcova, R. 1997. Criteria for selection of lactobacilli for probiotic use. Vet. Med. 42: 19-27 

  48. Nes, I. F., S. S. Yoon, and D. B. Diep. 2007. Ribosomally synthesiszed antimicrobial peptides (bacteriocins) in lactic acid bacteria: A review. Food Sci. Biotechnol. 16: 675-690 

  49. Nguyen, T. D. T., J. H. Kang, and M. S. Lee. 2007. Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowing effects. Int. J. Food Microbiol. 113: 358-361 

  50. O'Connor, E. B., O. O'Sullivan, C. Stanton, M. Danielsen, P. J. Simpson, M. J. Callanan, R. P. Ross, and C. Hill. 2007. pEOC01: A plasmid from Pediococcus acidilactici which encodes an identical streptomycin resistance (aadE) gene to that found in Campylobacter jejuni. Plasmid 58: 115-126 

  51. Ouwehand, A. C., P. V. Kirjavainen, C. Shortt, and S. Salminen. 1999. Probiotics: Mechanisms and established effects. Int. Dairy J. 6: 43-52 

  52. Rojo-Bezares, B., Y. Saenz, P. Poeta, M. Zarazaga, F. Ruiz-Larrea, and C. Torres. 2006. Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. Int. J. Food Microbiol. 111: 234-240 

  53. Saarela, M., G. Mogensen, R. Fonden, J. Matto, and T. Mattila-Sandholm. 2000. Probiotic bacteria: Safety, functional and technological properties. J. Biotechnol. 84: 197-215 

  54. Salminen, S., A. von Wright, L. Morelli, P. Marteau, D. Brassart, W. M. de Vos, et al. 1998. Demonstration of safety of probiotics - a review. Int. J. Food Microbiol. 44: 93-106 

  55. Sanchez, B., C. G. Reyes-Gavilan, and A. Margolles. 2006. The F1F0-ATPase of Bifidobacterium animalis is involved in bile tolerance. Environ. Microbiol. 8: 1825-1833 

  56. Sanchez, B., M. C. Champomier-Verges, M. C. Collado, P. Anglade, F. Baraige, Y. Sanz, C. C. Reyes-Gavilan, A. Margolles, and M. Zagorec. 2007. Low-pH adaptation and the acid tolerance response of Bifidobacterium longum biotype longum. Appl. Environ. Microb. 73: 6450-6459 

  57. Schiffrin, E. J., D. Brassart, A. L. Servin, F. Rochat, and A. Donnet-Hughes. 1997. Immune modulation of blood leukocytes in humans by lactic acid bacteria: Criteria for strain selection. Am. J. Clin. Nutr. 66: 515S-520S 

  58. Servin, A. L. 2003. Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract. Res. Clin. Gastroenterol. 17: 741-754 

  59. Simon, L., C. Fremaux, Y. Cenatiempo, and J. M. Berjeaud. 2002. Sakacin G, a new type of antilisterial bacteriocin. Appl. Environ. Microbiol. 68: 6416-6420 

  60. Stiles, M. E. and W. H. Holzapfel. 1997. Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36: 1-29 

  61. Sul, S. Y., H. J. Kim, T. W. Kim, and H. Y. Kim. 2007. Rapid identification of Lactobacillus and Bifidobacterium in probiotic products using multiplex PCR. J. Microbiol. Biotechnol. 17: 490-495 

  62. Tuomola, E. M. and S. J. Salminen. 1998. Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures. Int. J. Food Microbiol. 41: 45-51 

  63. Tuomola, E. M., A. C. Ouwehand, and S. J. Salminen. 1999. The effect of probiotic bacteria on the adhesion of pathogens to human intestinal mucus. FEMS Immunol. Med. Microbiol. 26: 137-142 

  64. Tuomola, E. M., A. C. Ouwehand, and S. J. Salminen. 2000. Chemical, physical and enzymatic pre-treatments of probiotic lactobacilli alter their adhesion to human intestinal mucus glycoproteins. Int. J. Food Microbiol. 60: 75-81 

  65. Zhou, J. S., C. J. Pillidge, P. K. Gopal, and H. S. Gill. 2005. Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. Int. J. Food Microbiol. 98: 211- 217 

  66. Zubillaga, M., R. Weill, E. Postaire, C. Goldman, R. Caro, and J. Boccio. 2001. Effect of probiotics and functional foods and their use in different diseases. Nutr. Res. 21: 569-579 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로