$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

In the process of turbine modernizations, the investigation of the influences of water passage roughness on radial flow machine performance is crucial and validates the efficiency step up between reduced scale model and prototype. This study presents the specific losses per component of a Francis turbine, which are estimated by CFD simulation. Simulations are performed for different water passage surface roughness heights, which represents the equivalent sand grain roughness height. As a result, the boundary layer logarithmic velocity profile still exists for rough walls, but moves closer to the wall. Consequently, the wall friction depends not only on roughness height but also on its shape and distribution. The specific losses are determined by CFD numerical simulations for each component of the prototype, taking into account its own specific sand grain roughness height. The model efficiency step up between reduced scale model and prototype value is finally computed by the assessment of specific losses on prototype and by evaluating specific losses for a reduced scale model with smooth walls. Furthermore, surveys of rough walls of each component were performed during the geometry recovery on the prototype and comparisons are made with experimental data from the EPFL Laboratory for Hydraulic Machines reduced scale model measurements. This study underlines that if rough walls are considered, the CFD approach estimates well the local friction loss coefficient. It is clear that by considering sand grain roughness heights in CFD simulations, its forms a significant part of the global performance estimation. The availability of the efficiency field measurements provides an unique opportunity to assess the CFD method in view of a systematic approach for turbine modernization step up evaluation. Moreover, this paper states that CFD is a very promising tool for future evaluation of turbine performance transposition from the scale model to the prototype.

참고문헌 (14)

  1. Kurokawa J., Toyokura T., Shinjo M., Matsuo K., 1978, “Roughness effects on the flow along an enclosed rotating disk,” bulletin of JSME, Vol. 21, No. 162, pp. 1725-1732. 
  2. Tanaka H., Nichtawitz A., 2000. “New scale effect formula being studied for future IEC code,” IAHR Symposium, Charlotte. 
  3. Tanaka H., Nichtawitz A., June 29-July 2, 2004, “Scale effect formula for future IEC code its theoretical background and features,” IAHR Symposium, Stockholm. 
  4. Nichtawitz A., Tanaka H., June 29-July 2, 2004, “Derivation of formulae for future IEC code on scale effects,” IAHR Symposium, Stockholm. 
  5. Krishnamachar P., Fay A., 2007, “The effect of surface roughness, International Water Power and Dam Construction, www.waterpowermagazine.com. 
  6. Maruzewski P., Hasmatuchi V., Mombelli H.-P., Burggraeve D., Iosfin J., Finnegan P. and Avellan F., 2008, “Surface roughness impact on Francis turbine performances and prediction of efficiency step up,” 24th IAHR Symposium on Hydraulic Machinery and Systems, Foz do Iguassu, Brasil. 
  7. Churchill S.W., 1988, Viscous Flows, “The practical use of theory,” Butterworth Ser Chem Engng, ISBN 0-409-95185-4. 
  8. EPFL, 2006, British Columbia Hydro, “Geometry recover of Francis turbine,” technical report, Lausanne, Switzerland. 
  9. Lechner R., Menter F. R., 2008, “Treatment of rough wall on CFX-11, ANSYS technical report,” Germany. 
  10. White M., 1979, “Viscous Fluid flow,” Mac Graw-Hill. 
  11. Schlichting H., 1979, “Boundary layer,” Mac Graw Hill. 
  12. Avellan F., 2005, Cours de turbomachines hydrauliques, equations des turbomachines. Cours, EPFL. 
  13. Maruzewski P., Avellan F., 2008, “Roughness analysis,” EPFL technical report, Lausanne, Switzerland. 
  14. Osterwalder J., Hippe L., 1984, “Guidelines for efficiency scaling process of hydraulic turbomachines with different technical roughnesses of low passages,” Journal Hydraulic Research, Vol. 22, No. 2, pp. 77-10. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일