$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

농약 검출을 위한 바이오센서 시스템 연구 및 그 응용
Biosensor System for the Detection of Agrichemicals and Its Applications 원문보기

KSBB Journal, v.24 no.3, 2009년, pp.227 - 238  

박태정 (한국과학기술원 생물공정연구센터, 시스템 및 합성생명공학연구센터, 바이오융합연구소) ,  양민호 (한국과학기술원 생물공정연구센터, 시스템 및 합성생명공학연구센터, 바이오융합연구소) ,  이상엽 (한국과학기술원 생물공정연구센터, 시스템 및 합성생명공학연구센터, 바이오융합연구소) ,  김수현 (한국과학기술원 기계공학과)

초록
AI-Helper 아이콘AI-Helper

현재까지의 농약 검출용 바이오센서는 화학 센서, immunoassay, 화학 테스트 킷과 같은 다른 잘 알려진 분석 방법들과 경쟁적으로 연구되어 지고 있다. 바이오센서가 농약을 증명하는 간단하고 저렴한 방법으로 chromatography 방법들을 대체할 잠재력을 가지고 있음에도 불구하고 정확한 정량적 분석 방법이 아직도 미비하다. 안정하고 강력한 바이오센서의 발전을 위해서 유전자 조작을 이용한 효소 개량을 통해 좀 더 민감하고 반응속도가 빠른 생촉매와 특이성이 높은 항체의 개발이 요구되고 있다. 바이오센서의 안정성 개선과 transducer 표면으로부터의 빠른 신호 전달을 위해 새로운 고정화 방법이 탐구되어져야 한다. 비록 약간의 방법들이 시료의 전처리를 필요로 하지 않을 지라도 센서의 안정성은 또 다른 개념으로 접근해야 한다. 그래서 현장 적용을 위해, 보다 간편한 시료의 전처리과정 혹은 직접적인 분석 방식이 동일시되어 개선되어야 한다. 향상된 fabrication 기술을 이용한 소형화 센서 혹은 일회용 킷의 개발은 개인용 및 산업용, 의약용 등의 여러 분야에서 실시간으로 분석이 가능하게 할 것이다. 실제 샘플의 빠르고 자동화 및 소형화된 분석 시스템의 구축을 위해 장차 매우 선택적인 다중 검출 바이오센서의 설계에 더 많은 중점을 둘 필요가 있다. 앞으로 잔류농약 검출을 위한 휴대형 바이오센서의 개발과 상용화를 위해서, 무엇보다 현재의 GC, LC (혹은 GC/MS, LC/MS) 분석을 위해 이루어지고 있는 샘플 전처리 방법의 경우, 다량의 샘플로부터 유기용매 등을 이용한 추출방법으로 진행되고 있기 때문에 샘플 전처리를 간소화하고 간단한 측정방법으로 전체의 측정결과를 대변할 수 있는 방안을 구축하고 잔류농약의 법적 허용기준과 적용이 가능한 방법을 찾아내는 노력이 절실히 요구되는 상황이다.

Abstract AI-Helper 아이콘AI-Helper

In the recent years, some organic toxic chemicals were used for obtaining high-yield productivity in agriculture. The undegraded pesticides may remain in the agricultural foods through atmosphere, water, and soil and cause public health problems to environmental resources and human beings even at ve...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 또한 시간이 오래 걸리고 복잡한 과정을 거치는 분석방법이기 때문에 현장 측정에 적합하지 않다. 그래서 농약의 분석을 위해 간단하고 편리한 대안으로 바이오센서 시스템을 사용하고자 하는 것이다. 바이오센서는 측정 가능한 신호를 얻기 위해 생물학적 성분 (효소, 전세포, 항체 등)과 전기적인 요소가 접목되어 있어서 강력한 크로마토그래피 분석방법들과 필적하지 않더라도 이들은 빠르고 신뢰할 수 있는 분석을 제공할 수 있다.
  • 지난 약 30년 간, 효소, 전 세포, 항체 등을 사용하여 여러가지 저렴하고 신속하게 농약 검출이 가능한 바이오센서가 개발되어 왔다. 총설에서는 농약검출용 바이오센서의 다양한 양상을 살펴보고 주요 특징들을 서술하고자 한다.

가설 설정

  • 방법은 (i) 선택적인 추출법과 (ii) 방해 물질을 일정 농도 이하로 희석하는 것이다. 문헌에 따르면, 살충제뿐만 아니라 중금속이나 hypochloride와 같은 다른 물질에 의해서도 AChE의 활성은 억제되어 진다(95).
본문요약 정보가 도움이 되었나요?

참고문헌 (99)

  1. Jimenez, A. M. and M. J. Navas (1997), Chemiluminescent methods in agro-chemical analysis, Crit. Rev. Anal. Chem. 27, 291-305 

  2. Kim, J. S. (2005), MRLs for pesticides in foods, Korea Food & Drug Administration, Seoul, Korea 

  3. Lee, Y.-S., B.-H. Lee, and J.-H. Chun (1995), A study on the remaining concentration and toxicity of phosphates and carbamate insecticides by enzyme inhibition reactions in Nonsan, Chungnam, J. Kor. lnd. Eng. Chem. 37, 1755-1791 

  4. Alder, L., K. Greulich, G. Kempe, and B. Vieth (2006), Residue analysis of 500 high priority pesticides: Better by GC-MS or LC-MS/MS?, Mass Spectrom. Rev. 25, 838-865 

  5. Nunes, G. S., I. A. Toscano, and D. Barcelo (1998), Analysis of pesticides in food and environmental samples by enzyme-linked immunosorbent assays, Trends Anal. Chem. 17, 79-87 

  6. Pandey, P. C., R. W. Aston, and H. H. Weetall (1995), Tetracyanoquinodimethane mediated glucose sensor based on a self-assembling alkanethiollphospholipid bilayer, Biosens. Bioelectron. 10, 669-674 

  7. Mulchandani, A., P. Mulchandani, and W. Chen (1999), Amperometric thick-film strip electrodes for monitoring organophosphate nerve agents based on inlmobilized organophosphorus hydrolase, Anal. Chem. 71, 2246-2249 

  8. Choi, B. G., H. Park, T. J. Park, D. H. Kim, S. Y. Lee, and W. H. Hong (2009), Development of the electrochemical biosensor for organophosphate chemicals using CNT/ ionic liquid bucky gel e1ectrode, Electrochem. Commun. 11, 672-675 

  9. Hock, B., A. Dankwardt, K. Kramer, and A. Marx (1995), Immunochemical techniques : Antibody production for pesticide analysis. A review, Anal. Chim. Acta 311, 393-405 

  10. Killard, A. J., L. Micheli, K. Grennan, M. Franek, V. Kolar, D. Moscone, I. Palchetti, and M. R. Smyth (2001), Amperometric separation-free immunosensor for real-time environmental monitoring, Anal. Chim. Acta 427, 173-180 

  11. Xu, S., A. Wu, H. Chen, Y. Xie, Y. Xu, L. Zhang, J. Li, and D. Zhang (2007), Production of a novel recombinant Drosophila melanogaster acetylcholinesterase for detection of organophosphate and carbamate insecticide residues, Biomol. Eng. 24, 253-261 

  12. Mulchandani, A., W. Chen, P. Mu1chandani, J. Wang, and K. R. Rogers (2001), Biosensors for direct determination of organophosphate pesticides, Biosens. Bioelectron. 16, 225-230 

  13. Kandimalla, V. K., N. S. Neeta, N. G. Karanth, M. S. Thakur, K. R. Roshini, B. E. A. Rani, A. Pasha, and N. G. K. Karanth (2004), Regeneration of ethyl parathion antibodies for repeated use in inlmunosensor: a study on dissociation of antigens from antibodies, Biosens. Bioelectron. 20, 903-906 

  14. Rekha, K., M. D. Gouda, M. S. Thakur, and N. G. Karanth (2000), Ascorbate oxidase based amperometric biosensor for organophosphorous pesticide monitoring. Biosens. Bioelectron. 15, 499-502 

  15. Jenkina, A. L., R. Yin, and J. L. Jensen (2001), Molecularly imprinted polymer sensors for pesticide and insecticide detection in water, Analyst 126, 798-802 

  16. Mulchandani, P., W. Chen, and A Mulchandani (2001), Flow injection amperometric enzyme biosensor for direct determination of organophosphate nerve agents. Environ. Sci, Technol. 35, 3562-2565 

  17. Trojanowicz M. (2002), Determination of pesticides using electrochemical enzymatic biosensors, Electroanalysis 14, 1311-1328 

  18. Marty, J. L., N. Mionetto, T. Noguer, F. Ortega, and C. Roux (1993), Enzyme sensors for the detection of pesticides. Biosens. Bioelectron. 8, 273-280 

  19. Mazzei, F., F. Botre, and C. Botre (1996), Acid phosphatase/glucose oxidase-based biosensors for the determination of pesticides, Anal. Chim. Acta 336, 67-75 

  20. Ayyagari, M., S. Kametkar, R. Pande, K. A. Marx, J. Akkara, and D. L. Kaplan (1995), Chemiluminescencebased inhibition kinetics of alkaline phosphatase in the development of a pesticide biosensor, Biotechnol. Prog. 11, 699-703 

  21. Cremisini, C., A. D. Sario, J. Mela, R. Pilloton, and G. Paleshci (1995), Evaluation of the use of free and immobilised acetylcholinesterase for paraoxon detection with an amperometric choline oxidase based biosensor. Anal. Chim. Acta 311, 273-280 

  22. Zheng, J., C. A. Constantine, L. Zhao, V. K. Rastogi, T.-C. Cheng, J. J. DeFrank, and R. M. Leblanc (2005), Molecular interaction between organophosphorus acid anhydrolase and diisopropylfluorophosphate, Biomacromolecules 6, 1555-1560 

  23. Everett W. R. and G. A. Rechnitz (1998), Mediated bioelectrocatalytic determination of organophosphorus pesticides with a tyrosinase-based oxygen biosensor, Anal. Chem. 70, 807-810 

  24. Dave, K. I., C. E. Miller, and J. R. Wild (1993), Characterization of. organophosphorous hydrolases and the genetic manipulation of. the phosphotriesterases from pseudomonas diminuta, Chem Biol. Intract. 87, 55-68 

  25. Mitchell, K. M. (2004), Acetylcholine and choline amperometric enzymε sensors characterized in vitro and in vivo, Anal. Chem. 76, 1098-1106 

  26. Kok, F. N. and V. Hasirci (2004), Determination of binary pesticide mixtures by an acetylcholinesterasecholineoxidase biosensor, Biosens. Bioelectron. 19, 661-665 

  27. Montensinos, T., S. P. Munguia, F. Valdez, and J. L. Marty (2001), Disposable cholinesterase biosensor for the detection of pesticides in water-miscible organic solvents, Anal. Chim. Acta 431, 231-237 

  28. Trajkovska, S., K. Tosheska, J. J. Aaron, F. Spirovski, and Z. Zdravkovski (2005), Bioluminescence determination of enzyme activity of firefly luciferase in the presence of pesticides, Luminescence 20, 192-196 

  29. Lotti, M. (1995), Cholinesterase inhibition: complexities in interpretation, Chin. Chem. 41, 1814-1818 

  30. Ellman, G. L., K. D. Courtney, V. Andres, J. R., and R. M. Featherstone (1961), A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem, Pharmacol. 7, 88-95 

  31. Jeanty B. and J. L. Marty (1994), Detection of paraoxon by continuous flow system based enzyme sensor, Biosens. Bioelectron. 13, 213-218 

  32. la Rosa, C. F. Pariente, L. Hemandez, and E. Lorenzo (1993), Detennination of organophosphorus and carbamic pesticides with an acetylcholinesterase amperometric biosensor using 4-aminophenyl acetate as substrate, Anal. Chim. Acta 295, 273-282 

  33. Seki, A., F. Ortega, and J. L. Marty (1996), Enzyme sensor for the detection of herbicides inhibiting acetolactate synthase, Anal. Lett. 29, 1259-1271 

  34. Besombes, J., S. Cosnier, P. Labbe, and G. Reverdy (1995), A biosensor as warning device for the detection of cyanide, chlorophenols, atrazine and carbamate pesticides, Anal. Chim. Acta 311, 255-263 

  35. Perez Pita, M. T., A. J. Reviejo, F, F. J. M. de Villena, and J. M. Pingarron (1997), Amperometric selective biosensing of dimethyl- and diethyldithiocarbamates based on inhibition processes in a medium of reversed micelles, Anal. Chim. Acta 340, 89-97 

  36. Boublik, Y., P. Saint-Aguet, A. Lougarre, M. Amaud, F. Villatte, S. Estrada-Mondaca, and D. Fournier (2002), Acetylcholinesterase engineering for detection 

  37. Noguer, T., A. Gradinaru, A. Cincu, and J. L. Marty (1999), A new disposable biosensor for the accurate and sensitive detection of ethylenebis (dithiocarbamate) fungicides, Anal. Lett. 32, 1723-1738 

  38. Noguer, T., B. Leca, G. Jeanty, and J. L. Marty (1999), Biosensors based on enzyme inhibition : detection of organophosphorus and carbamate insecticides and dithiocarbamate fungicides, Field Anal. Chem. Tech. 3, 171-178 

  39. Andreescu, S., A. Avramescu, C. Bala, V. Magearu, and J.-L. Marty (2002), Detection of organophosphorus insecticides with immobilized acetylcholinesterasecomparative study of two enzyme sensors, Anal Bioanal. Chem. 374, 39-45 

  40. Gogol, E. V., G. A. Evtugyn, J. L. Marty, H. C. Budnikov, and V. G. Winter (2000), Amperometric biosensors based on Nafion coated screen-printed electrodes for the detεrmination of cholinesterase inhibitors, Talanta 53, 379-389 

  41. Lin, Y., F. Lu, and J. Wang (2004), Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents, Electroanalysis 16, 145-149 

  42. Sirvent, M. A., A. Merkoci, and S. Alegret (2001), Pesticide determination in tap water and juice samples using disposable amperometric biosensors made using thick-film technology, Anal, Chim, Acta 442, 35-44 

  43. Kindervater, R., W. Kunnecke, and R. D. Schimid (1990), Exchangeable immobillized reactor for enzyme inhibition tests in flow-injection analysis using a 

  44. Kandimalla, V. B. and H. X. Ju (2006), Binding of acetylcholinesterase to multiwall carbon nanotubecross-linked chitosan composite for flow-injection amperometric detection of an organophosphorous insecticide, Chem. Eur. J. 12, 1074-1080 

  45. Bucur, B., M. Dondoi, A. Danet, and J. L. Marty (2005), Insecticide identification using a flow injection analysis system with biosensors based on various cholinesterases. Anal. Chim. Acta 539, 195-201 

  46. Shao, C. Y., C. J. Howe, A. J. R. Porter, and L. A. Glover (2002), Novel cyanobacterial biosensor for detection of herbicides. Appl. Environ. Microbiol. 68, 5026-5033 

  47. Karns, J. S., M. T. Muldoon, W. W. Mulbury, M. Derbyshire, and P. C. Kearn (1987), Use of microorganisms and microbial systems in the degradation of pesticide, ACS Symp. Ser. 334, 157-170 

  48. Rainina, E. I, E. N. Efremenco, S. D. Varfolomeyev, A. L. Simonian, and J. F. Wild (1996), The development of a new biosensor based on recombinant E. coli for the direct detection of organophosphorus neurotoxins, Biosens. Bioelectron. 11, 991-1000 

  49. Cho, C. M., A. Mulchandani, and W. Chen (2004), Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos, Appl. Environ. Microbiol. 70, 4681-4685 

  50. Cho, C. M., A. Mulchandani, and W. Chen (2006), Functional analysis of organophosphorus hydrolase variants with high degradation activity towards organophosphate pesticides, Protein Eng. Des. Sel. 19, 99-105 

  51. Yang, H., P. D. Carr, S. Y. McLoughlin, J. W. Liu, I. Home, X. Qiu, C. M. J. Jeffries, R. J. Russell, J. G. Oakeshott, and D. L. Ollis (2003), Evolution of an organophosphate-degrading enzyme: a comparison of natural and directed evolution, Protein Eng. 16, 135-145 

  52. Irene Home, Xinghui Qiu, David L. Ollis, Robyn J. Russell, and John G. Oakeshott (2006), Functional effects of amino acid substitutions within the large binding pocket of the phosphotriεsterase OpdA from Agrobacterium sp. P230, FEMS Microbiol. Lett. 259, 187-194 

  53. Hill, C. M., F. Wu, T.-C. Cheng, J. J. DeFrank, and F. M. Raushel (2000), Substrate and stereochemical specificity of the organophosphorus acid anhydrolase from Alteromonas sp. JD6.5 toward p-nitrophenyl phosphotriesters, Bioorgan. Med. Chem. Lett. 10, 1285-1288 

  54. Neufeld, T., I. Eshkenazim E. Cohen, and J. Rishpon (2000), A micro flow injection electrochemical biosensor for organophosphorus pesticides, Biosens. Bioelectron. 15, 323-329 

  55. Jaffrezic-Renault, N. (2001), New trends in biosensors for organophosphorus pesticides, Sensors 1, 60-74 

  56. Im, H., X.-J. Huang, B. Gu, and Y.-K. Choi (2007), A dielectric-modulated field-effect transistor for biosensing, Nat. Nanotechnol. 2, 430-434 

  57. Martinez, M. T., Y.-C. Tseng, N. Ormategui, I. Loinaz, R. Eritja, and J. Bokor (2009), Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors, Nano Lett. 9, 530-536 

  58. Meulenberg, E. P., W. H. Mulder, and P. G. Stocks (1995), Immunoassays for pesticides. Environ. Sci Tech. 29, 553-561 

  59. Puchades, R. and A. Maquieira (1996), Recent developments in flow injection immunoanalysis, Crit. Rev. Anal. Chem. 26. 195-218 

  60. Sawyer, L. D., B. M. McMahon, W. M. Newsome, and G. A. Parker (1990), in Pesticide and lndustrial Chemical Residues, 15th ed., AOAC : Champaign, Illinois 

  61. Kroger, S., S. J. Setford, and A. P. F. Tumer (1998), Immunosensor for 2,4-dichlorophenoxyacetic acid in aqueous/organic solvent soil extracts, Anal. Chem. 70, 5047-5053 

  62. Penalva, J., R. Puchades, and A. Maquieira (1999), Analytical properties of immunosensors working in organic media. Anal. Chem. 71, 3862-3872 

  63. Minunni, M., P. Skladal, and M. Mascini (1994), A piezoelectric quartz crystal biosensor for atrazine, Life Chem. Rep. 11, 391-398 

  64. Szekacs, A., N. Trummerb, N. Adanyi, M. Varadi, and I. Szendro (2003), Development of a non-labeled immunosensor for the herbicide trifluralin via optical waveguide lightmode spectroscopic detection, Anal. Chim. Acta 487, 31-42 

  65. Zeravik, J., T. Ruzgas, and M. Franek (2003), A highly sensitive flow-through amperometric immunosensor based on the peroxidase chip and enzyme-channeling principle, Biosens. Bioelectron. 18, 1321-1327 

  66. Alvarez, M., A. Calle, J. Tamayo, L. M. Lechuga, A. Abad, and A. Montoya (2003), Development of nanomechanical biosensors for detection of the pesticide DDT, Biosens. Bioelectron. 18, 649-653 

  67. Gonzalez-Martinez, M. A., S. Morais, R. Puchades, A. Maquieira, A. Abad, and A. Montoya (1997), Monoclonal antibody-based flow-through immunosensor for analysis of carbaryl, Anal. Chem. 69, 2812-2818 

  68. Barzen, C., A. Grecht, and G. Gauglitz (2002), Optical multiple-analyte immunosensor for water pollution control. Biosens. Bioelctron. 17, 289-295 

  69. Txchmelak, J., G. Proll, and G. Gauglitz (2004), Ultra-sensitive ful1y automatied immunoassay for detection of propanil in aqueous samples: steps of progress toward sub-nanogram per liter detection, Anal. Bioanal. Chem. 379, 1004-1012 

  70. Guilbault, G. G., B. Hock, and R. Schmid (1992), A piezoelectric immunobiosensor for atrazine in drinking water. Biosnes. Bioelectron. 7, 411-419 

  71. Horacek, J. and P. Skladal (1997), Improved direct piezoelectric biosensors operating in liquid solution for the competitive label-free immunoassay of 2,4- dichlorophenoxyacetic acid, Anal. Chim. Acta 347, 43-50 

  72. Steegborn, C. and P. Skladal (1997), Construction and characterization of the direct piezoelectric immunosensor for atrazine operating in solution, Biosens. Bioelectron. 12, 19-27 

  73. Pribyl, J., M. Hepel, J. Halameka, and P. Sklada (2003), Development of piezoelectric immunosensors for competitive and direct determination of atrazine, Sens. Actuat. B 91, 333-341 

  74. Dzantiev, B. B., A. V. Zherdev, M. F. Yulaev, R. A. Sitdikov, N. M. Dmitrieva, and I. Y. Moreva (1996), Electrochemical immunosensors for determination of the pesticides 2,4-dich1orophenoxyacetic and 2,4,5-tricho1orophenoxyacetic acids, Biosens. Bioelectron. 11, 179-185 

  75. Hu, S. Q., J. W. Xie, Q. H. Xu, K T. Rong, G. L. Shen, and R. Q. Yu (2003), A label-free e1ectrochemical immunosensor based on gold nanoparticles for detection of paraoxon, Talanta 61, 769-777 

  76. Grennan, K., G. Strachan, A. J. Porter, A. J. Killard, and M. R. Smyth (2003), Atrazine ana1ysis using an amperometric immunosensor based on single-chain antibody fragments and regeneration-free multi-calibrant measurement, Anal. Chim. Acta 500, 287-298 

  77. Kalab, T. and P. Skladal (1995), A disposable amperometric immnosensor for 2,4-dichlorophenoxyacetic acid, Anal. Chim. Acta 304, 361-368 

  78. Dzantiev, B. B., E. V. Yazynina, A. V. Zherdev, Y. V. Plekhanova, A. N Reshetiv, S. C. Chang, and C. J. McNeil (2004), Determination of the herbicide chlorsulfuron by amperometric sensor based on separation-free bienzyme immunoassay, Sens. Actuat. B 98, 254-261 

  79. Massei, F., F. Botre, G. Lorenti, G. Simonetti, F. Porcelli, G. Scibona, and C. Botre (1995), Plant tissue electrode for the determination of atrazine, Anal. Chim Acta 316, 79-82 

  80. Preuss, M. and A. H. Halt (1995), Mediated herbicide inhibition in a PET biosensor, Anal. Chem. 67, 1940-1949 

  81. Choi, S. S., S. H. Seo, D. G. Kang, H. J. Cha, and S. H. Yeom (2006), Enhancement of paraoxon biodegradation rate from recombinant Escherichia coli catalyst for bioremediation, 유기물자원화 14, 110-116 

  82. Mulchandani, A., P. Mulchandani, I. Kaneva, and W. Chen (1998), Biosensor for direct determination of organophosphate nerve agεnts using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 1. Potentiometric microbial electrode, Anal. Chem. 70, 4140-4145 

  83. Richins, R. D., I. Kaneva, A. Mulchandani, and W. Chen (1997), Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase, Nat. Biotechnol. 15, 984-987 

  84. Takayama, K., S. Suye, K. Kuroda, M. Ueda, T. Kitaguchi, K. Tsuchiyama, T. Fukuda, W. Chen, and A. Mulchandani (2006), Surface display of organophosphorus hydrolase on Saccharomyces cerevisiae, Biotechnol. Prog. 22, 939-943 

  85. Yang, C., N. Cai, M. Dong, H. Jiang, J. Li, C. Qiao, A. Mulchandani, and W. Chen (2007), Surface display of MPH on Pseudomonas putida JS444 using ice nucleation protein and its application in detoxification of organophosphates, Biotechnol. Bioeng. 99, 30-37 

  86. Thibeau, R. J., L. V. Haverbeke, and C. W. Brown (1978), Detection of water pollutants by laser excited resonance Raman spectroscopy; pesticides & fungicides, Appl. Spectrosc. 32, 98-100 

  87. Skoulika, S. G., C. A. Georgiou, and M. G. Polissiou (1999), Quantitative determination of fenthion in pesticide formulations by FT -Raman spectroscopy, Appl. Spectrosc. 53, 1470-1474 

  88. Skoulika, S. G., C. A. Georgiou, and M. G. Polissiou (2000), Rapid quantitation analysis of organophosphorus pesticide formulations by FT-Raman spectroscopy, Internet J. Vib. Spec. 4, 3 

  89. Quintas, G., S. Garrigues, and M. de la Guardia (2004), FT-Raman spectrometry determination of Malathion in pesticide formulations, Talanta 63, 345-350 

  90. Tanner, P. A. and K.-H. Leung (1996), Spectral interpretation and qualitative analysis of organophosphorus pesticides using FT-Raman & FT-IR spectroscopy, Appl. Spectrosc. 50, 565-571 

  91. Armenta, S., G. Quintas, S. Garrigues, and M. de la Guardia (2004), Determination of cyromazine in pesticide commercial formulations by vibrational spectrometric procedures, Anal. Chim. Acta 524, 257-264 

  92. Armenta, S., S. Garrigues, and M. de la Guardia (2007), Determination of iprodione in agrochemicals by IR & Raman spεctrometry, Anal. Bioanal. Chem. 

  93. Alak, A. M. and T. Vo-Dinh (1987), Surface-enhanced Raman spectrometry of organophosphorus chemical agents, Anal. Chem. 59, 2149-2153 

  94. Lee, D., S. Lee, G. H. Seong, J. Choo, E. K. Lee, D.-G. Gwon, and S. Lee (2006), Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced raman spectroscopy, Appl. Spectrosc. 60, 373-377 

  95. Soldatkin, A. P., D. V. Gorchkoh, C. Martelet, and N. Jaffrezi-Renault (1997), New enzyme potentiometric sensor for hypochlorite species detection, Sens. Actuat. B 43, 99-104 

  96. Stoycheva, M. (2002), Electrochemical evaluation of the kinetic parameters of a heterogeneous enzyme reaction in presence of metal ions. Electroanalysis 14, 923-927 

  97. Nugent, P. (1992), in Emerging Strategies for Pesticide Analysis (T. Caims and J. Sherma, eds), CRC Press, Boca Raton, Florida 

  98. Hill, A. S. J. V. Mei, C. Yin, B. S. Ferguson, and J. H. Skerritt (1991), Determination of the insect growth regulator methoprene in wheat grain and milling fractions using an enzyme immunoassay, J. Agric. Food Chem. 39, 1882-1886 

  99. King, J. W. and K. S. Nam (1996), in Residue Analysis in Food Safety (R. C. Beier and L. H. Stanker, eds), ACS Symposium Series 621, Americam Chemical Society, Washington 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로