$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 임플란트 경부형상이 주위골 응력에 미치는 영향에 관한 유한요소법적 분석
Finite element analysis of peri-implant bone stress influenced by cervical module configuration of endosseous implant 원문보기

대한치과보철학회지 = The journal of Korean academy of prosthodontics, v.47 no.4, 2009년, pp.394 - 405  

정재민 (경북대학교 치의학전문대학원 치과보철학교실) ,  조광헌 (경북대학교 치의학전문대학원 치과보철학교실) ,  이청희 (경북대학교 치의학전문대학원 치과보철학교실) ,  유원재 (경북대학교 치의학전문대학원 치과교정학교실) ,  이규복 (경북대학교 치의학전문대학원 치과보철학교실)

초록
AI-Helper 아이콘AI-Helper

연구목적: 임플란트 경부의 치은관통부 형상이 주위골 응력분포에 미치는 영향에 대해 조사하고자 한다. 연구재료 및 방법: 높이 2.8 mm, 상부 직경 4 mm, 하부 직경 2.7 mm 인 직선형 치은관통부를 가지는 ITI의 일체형(one piece) 임플란트 (Straumann, Waldenburg, Switzerland)를 Base Model로 사용하여, 치은관통부 외형에 함몰부를 부여하여 곡선형으로 수정한 4개의 해석 모델 (Model-1, -2, -3, -4)을 설정하였다. Base Model을 포함, 모두 5개의 경우에 대해 축대칭 유한요소모델링을 통해 임플란트 장축에 평행인 수직 방향과 임플란트 장축에 $30^{\circ}$ 경사진 방향으로 각각 50 N의 힘이 작용할 때 발생되는 임플란트 주위골의 응력을 해석하여 비교하였다. 체계적인 응력비교를 위해 임플란트 주위에 19개의 절점을 응력 관찰점으로 선정하였으며, 경부 치밀골에 설정된 5개 관찰점의 응력으로부터 회귀분석법으로 임플란트/골 사이에서 생기는 최대응력값을 추정하여 정량적인 비교를 실행하였다. 결과: 최대 골응력은 치은관통부가 직선인 기본모델에서 가장 컸으며, 치은 관통부를 곡선으로 설계한 경우 응력이 감소되었다. 치은 함몰부가 클수록 응력감소 정도가 커졌으며 함몰부의 수직위치가 몸체부에 가장 가까운 Model-4에서 응력감소 정도가 전체의 약5%로 가장 컸다. 결론: 임플란트의 경부 형상은 골응력에 영향을 미치며, 이를 곡선형으로 함으로써 또한 그 함몰부를 몸체부에 근접하게 함으로써 경부골 응력감소를 효과적으로 도모할 수 있다.

Abstract AI-Helper 아이콘AI-Helper

Statement of problem: Crestal bone loss, a common problem associated with dental implant, has been attributed to excessive bone stresses. Design of implant's transgingival (TG) part may affect the crestal bone stresses. Purpose: To investigate if concavely designed geometry at a dental implant's TG ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 그러므로 임플란트 재질의 최대응력의 관점에서 하중조건에 따른 재료강도학적인 분석이 필요할 것이다. 본 연구에서는 골응력에 주목하였으며 경부디자인이 임플란트 자체의 강도에 미치는 영향에 대해서는 제한된 범위내에서 평가를 수행하였다.
  • 그러나 임플란트와 관련한 이전의 생역학적인 연구는 주로 하부 고정체의 형상과 나사산에 초점을 두었고 경부 관련 연구는 상대적으로 미미 하였다. 이에 본 연구에서는 유한요소해석을 통해 임플란트 경부 형상이 임플란트 주위골의 응력에 미치는 영향에 대해 분석하였다.

가설 설정

  • 응력분포특성에 중요한 임플란트 경부골 곡면은 악골의 근원심 방향과 협설 방향 단면으로부터 가상적인 평균 곡률을 추론하여 spline 곡선을 이용, 굴곡없이 자연스런 형상으로 모델링하였다. 치밀골의 두께는 이전 연구37와 mesh 구성의 편의를 위해 0.8 mm로 가정하였으며 경부를 제외하고는 골/임플란트 계면은 모두 해면골로 가정 하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
치과용임플란트의경부를둘러싸고있는조직 중, 연조직과 경조직은 어떤 손상을 받을 수 있는가? 치과용임플란트의경부를둘러싸고있는조직은대단히 가혹한 조건에 노출된다. 이 부위의 연조직과 경조직은 임플란트 식립시 피판 거상 등 수술에 따른 조직손상,1,2 drilling에 의한 열손상3 등을 받을 수 있고, 구강환경의 생화학적 자극과 저작압에 따른 응력을 지탱하여야 한다. 외부자극이 생리적 허용치를 넘는 경우 조직의 퇴축이생길수있고, 임플란트지지골, 특히경부골의퇴축이 관리되지 않으면 장기적으로 임플란트의 실패로 이어질 수 있으므로 유의를 요한다.
임플란트경부골의퇴축원인에는 어떤 것들이 있다고 거론되는가? 임플란트경부골의퇴축원인에대해서는아직학문적 논란이 진행되고 있다. 주요 인자로 거론되어온 것들에는 외과시술에 의한 손상, 1 과하중, 5 임플란트 주위염, 6 고 정체/지대주 연결부의 미세한 틈새, 6-8 생물학적 폭경, 9-11임플란트 경부의 디자인, 12 등이 포함된다. 구강조건에서는 여러 인자들이 중첩하여 작용하므로 각 인자들간의 상호관계를 정량적으로 규명하기 위해서는 아직 많은 노력이 필요할 것이다.
치과용임플란트의경부를둘러싸고있는조직 중, 연조직과 경조직은 어떤 것을 지탱하여야 하는가? 치과용임플란트의경부를둘러싸고있는조직은대단히 가혹한 조건에 노출된다. 이 부위의 연조직과 경조직은 임플란트 식립시 피판 거상 등 수술에 따른 조직손상,1,2 drilling에 의한 열손상3 등을 받을 수 있고, 구강환경의 생화학적 자극과 저작압에 따른 응력을 지탱하여야 한다. 외부자극이 생리적 허용치를 넘는 경우 조직의 퇴축이생길수있고, 임플란트지지골, 특히경부골의퇴축이 관리되지 않으면 장기적으로 임플란트의 실패로 이어질 수 있으므로 유의를 요한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (52)

  1. Eriksson RA, Albrektsson T. The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber. J Oral Maxillofacial Surg 1984;42:705-11 

  2. Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (II). Etiopathogenesis. Eur J Oral Sci 1998;106:721-64 

  3. Covani U, Bortolaia C, Barone A, Sbordone L. Bucco-lingual crestal bone changes after immediate and delayed implant placement. J Periodontol 2004;75:1605-12 

  4. Weinberg LA, Kruger B. Biomechanical considerations when combining tooth-supported prostheses. Oral Surg Oral Med Oral Pathol 1994:78:22-7 

  5. Misch CE, Suzuki JB, Misch-Dietsh FM, Bidez MW. A positive correlation between occlusal trauma and peri-implant bone loss: literature support. Implant Dent 2005;14:108-16 

  6. Broggini N, McManus LM, Hermann JS, Medina RU, Oates TW, Schenk RK, Buser D, Mellonig JT, Cochran DL. Persistent acute inflammation at the implant-abutment interface. J Dent Res 2003;82:232-7 

  7. Hermann JS, Buser D, Schenk RK, Cochran DL. Crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged and submerged implants in the canine mandible. J Periodontol 2000;71:1412-24 

  8. Piattelli A, Vrespa G, Petrone G, Iezzi G, Annibali S, Scarano A. Role of the microgap between implant and abutment: a retrospective histologic evaluation in monkeys. J Periodontol 2003;74:346-52 

  9. Sanavi F, Weisgold AS, Rose LF. Biologic width and its relation to periodontal biotypes. J Esthet Dent 1998;10:157-63 

  10. Tarnow DP, Cho SC, Wallace SS. The effect of inter-implant distance on the height of inter-implant bone crest. J Periodontol 2000;71:546-9 

  11. Hartman GA, Cochran DL. Initial implant position determines the magnitude of crestal bone remodeling. J Periodontol 2004;75:572-7 

  12. Oh TJ, Yoon J, Misch CE, Wang HL. The causes of early implant bone loss: myth or science? J Periodontol 2002; 73:322-33 

  13. Chun HJ, Cheong SY, Han JH, Heo SJ, Chung, JP, Rhyu IC, Choi YC, Baik HK, Ku H, Kim MH. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil 2002;29:565-74 

  14. Bozkaya D, Muftu S, Muftu A. Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. J Prosthet Dent 2004;92:523-30 

  15. Holmes DC, Loftus JT. Influence of bone quality on stress distribution for endosseous implants. J Oral Implantol 1997;23:104-11 

  16. Kitagawa T, Tanimoto Y, Nemoto K, Aida M. Influence of cortical bone quality on stress distribution in bone around dental implant. Dent Mater J 2005;24:219-24 

  17. Petrie CS, Williams JL. Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis. Clin Oral Implants Res 2005;16:486-94 

  18. Sevimay M, Turhan F, Kilicarslan MA, Eskitascioglu G. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implantsupported crown. J Prosthet Dent 2005;93:227-34 

  19. Barbier L, Vander Sloten J, Krzesinski G, Schepers E, Van der Perre G. Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog. J Oral Rehabil 1998;25:847-58 

  20. Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Influence of marginal bone resorption on stress around an implant-a three-dimensional finite element analysis. J Oral Rehabil 2005;32:279-86 

  21. Natali AN, Pavan PG, Ruggero AL. Analysis of bone-implant interaction phenomena by using a numerical approach. Clin Oral Implants Res 2006;17:67-74 

  22. Frost HM. A 2003 update of bone physiology and Wolff''s Law for clinicians. Angle Orthod 2004;74:3-15 

  23. Melsen B. Biological reaction of alveolar bone to orthodontic tooth movement. Angle Orthod 1999;69:151-8 

  24. Clelland NL, Ismail YH, Zaki HS, Pipko D. Three-dimensional finite element stress analysis in and around the Screw-Vent implant. Int J Oral Maxillofac Implants 1991;6:391-8 

  25. Clelland NL, Gilat A. The effect of abutment angulation on stress transfer for an implant. J Prosthodont 1992;1:24-8 

  26. Meijer HJ, Starmans FJ, Steen WH, Bosman F. Location of implants in the interforaminal region of the mandible and the consequences for the design of the superstructure. J Oral Rehabil 1994;21:47-56 

  27. Hoshaw SJ, Brunski JB, Cochran GVB. Mechanical loading of Bra?.???.nemark fixtures affects interfacial bone modeling and remodeling. Int J Oral Maxillofac Implants 1994; 9:345-60 

  28. Isidor F. Histological evaluation of peri-implant bone at implants subjected to occlusal overload or plaque accumulation. Clin Oral Implants Res 1997;8:1-9 

  29. Quirynen M, Naert I, van Steenberghe D. Fixture design and overload influence marginal bone loss and fixture success in the Br $\aa$ nemark system. Clin Oral Implants Res 1992;3:104-11 

  30. Jung ES, Jo KH, Lee CH. A finite element stress analysis of the bone around implant following cervical bone resorption. J Korean Acad Implant Dent 2003;22:38-47 

  31. Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a threedimensional finite element analysis. Clin Oral Implants Res 

  32. Callan DP, Hahn J, Hogan B, Jenkins G, Krauser JT. Implant failure. Implant Dent 2002;11:109-17 

  33. Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2003;18:357-68 

  34. Hansson S, Werke M. The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. J Biomech 2003;36:1247-58 

  35. O'Brien, GR, Gonshor A, Balfour A. A 6-year prospective study of 620 stress-diversion surface (SDS) dental implants. J Oral Implantol 2004;30:350-7 

  36. Gotfredsen K, Berglundh T, Lindhe J. Bone reactions adjacent to titanium implants with different surface characteristics subjected to static load. A study in the dog (II). Clinl Oral Implants Res 2001;12:196-201 

  37. Yu W, Jang YJ, Kyung HM. Combined influence of implant diameter and alveolar ridge width on crestal bone stress: a quantitative approach. Int J Oral Maxillofac Implants 2009;24:88-95 

  38. NISA II / DISPLAY III User’'s Manuel, Engineering Mechanics Research Corporation (EMRC) 

  39. Borchers L. Reichart P. Three-dimensional stress distribution around a dental implant at different stages of interface development. J Dent Res 1983:62:155-9 

  40. Collings EW. The physical metallurgy of titanium alloys. Metals Park (OH): Americal society of metals. 1984 

  41. Craig RG. Restorative dental materials. 8th ed. St. Louis (MO):Mosby:1989. p84 

  42. Nicolella DP, Lankford J, Jepsen KJ, Davy DT. Correlation of physical damage development with microstructure and strain localization in bone. Am Soc Mechanical Engineers 1997;35:311-2 

  43. Koh CS, Lee MS, Choi KW. Improved stress analyses of dental systems implant by homogenization technique. J Korean Acad Periodontol 1997;27:263-90 

  44. Lavernia CJ, Cook SD, Weinstein AM, Klawitter JJ. An analysis of stresses in a dental implant system. J Biomech 1981;14:555-60 

  45. Richter EJ. In vivo vertical forces on implants. Int J Oral Maxillofac Implants 1995;10:99-108 

  46. Anderson DJ. Measurement of stress in mastication. I. J Dent Res 1956;35:664-70 

  47. Anderson DJ. Measurement of stress in mastication. II. J Dent Res 1956;35:671-3 

  48. Hanses G, Smedberg JI, Nilner K. Analysis of a device for assessment of abutment and prosthesis screw loosening in oral implants. Clin Oral Implants Res 2002;13:666-70 

  49. Sutter F, Weber HP, Sorensen J, Belser U. The new restorative concept of the ITI dental implant system: design and engineering. Int J Perio Rest Dent 1993;13:409-31 

  50. Norton MR. An in vitro evaluation of the strength of a 1-piece and 2-piece conical abutment joint in implant design. Clin Oral Implants Res 2000;11:458-64 

  51. Merz BR, Hunenbart S, Belser UC. Mechanics of the implant-abutment connection: an 8-degree taper compared to a butt joint connection. Int J Oral Maxillofac Implants 2000;15:519-26 

  52. Degidi M, Piattelli A. 7-year follow-up of 93 immediately loaded titanium dental implants. J Oral Implantol 2005;31:25-31 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로