$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

이온성 액체를 이용한 바이오폴리머 기반의 소재 개발 및 생명공학 분야로의 응용
Development of Biopolymer-based Materials Using Ionic Liquids and Its Biotechnological Application 원문보기

KSBB Journal, v.25 no.5, 2010년, pp.409 - 420  

이상현 (건국대학교 미생물공학과) ,  박태준 (연세대학교 화공생명공학과)

Abstract AI-Helper 아이콘AI-Helper

Biopolymer-based materials recently have garnered considerable interest as they can decrease dependency on fossil fuel. Biopolymers are naturally obtainable macromolecules including polysaccharides, polyphenols, polyesters, polyamides, and proteins, that play an important role in biomedical applicat...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 극초단파 조사 (microwave irradiation) 방법을 이용하여 25%가량의 셀룰로오스를 [Bmim][Cl]에 용해시키고, 물, 에탄올, 아세톤 등의 anti-solvent를 이용하여 셀룰로오스를 다시 재구성하는 것이 가능하다는 것을 보여주었다 [10]. 이러한 결과는 셀룰로오스의 균일한 화학적 변형이나 변형되지 않은 셀룰로오스 기반의 복합소재 개발의 가능성을 열었다. 셀룰로오스 용해과정의 NMR 결과는 [Bmim][Cl]의 Cl 음이온이 hydrogen bond acceptor로 작용하여 셀룰로오스의 hydroxyl 그룹과 interaction을 가지는 것으로 알려졌다 [32-34].
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
셀룰로오스가 생의학 분야에서 응용 전망이 높은 소재인 이유는? 셀룰로오스는 포도당이 β-(1→4) 글리코시드결합 (glycosidic bond)으로 연결된 선형 고분자로 세상에서 가장 풍부하게 존재하는 바이오폴리머이다. 특히, 변형되지 않은 셀룰로오스는 높은 열적 안정성과 물리적 강도, 생체적합성과 생분해성으로 생의학 분야에서의 응용에 매우 전망이 높은 소재이다 [4]. 예를 들어, 직조된 셀룰로오스 패드는 멸균이 가능하고, 생체적합성이 우수하고, 다공성이면서, 탄력이 뛰어나서 상처 드레싱에 쓸 수 있다 [5].
비휘발성 이온성 액체를 이용한 dry-jet wet 전기방사 방법에서, 더 얇은 섬유를 만드는 방법으로 최근 제시된것은? 이러한 과정을 통해서 100-500 nm 정도의 셀룰로오스 나노섬유의 생산이 가능하였고, Zhang 등은 용액의 전도도를 증가시키면 전기방사된 섬유의 지름을 줄일 수 있다고 보고하였다 [72]. 최근의 결과에 따르면, dimethylsulfoxide나 dimethylformamide 등의 cosolvent를 이용해서 이온성 액체 용액의 점도, 표면장력, 전도도를 변화시킬 수 있고, 전기방사 효율을 증대시킴으로써 더 얇은 섬유가 만들어 질 수 있었다 [73,74]. 셀룰로오스의 coagulation 방법에 있어서도 80% 정도의 습도 조건하에서 coagulation bath가 없더라도 셀룰로오스 섬유를 만들 수 있다는 것이 알려졌다 [74].
바이오폴리머는 어떤 분야에 이용되는가? 바이오폴리머는 석유 자원에 대한 의존도를 낮출 수 있고, 재생 가능한 (renewable) 자원으로써 환경 친화적으로 얻을 수 있다는 점에서 최근 들어 다시 많은 관심을 받기 시작하였다. 자연에서 얻어지는 다양한 다당류, 폴리페놀류, 폴리에스터류, 폴리아마이드류, 단백질 등의 바이오폴리머는 조직공학 (tissue engineering), 재생의학 (regenerative medicine), 약물전달 (drug-delivery), 바이오센서 (biosensor) 등의 다양한 분야에서 이용되고 있다. 특히, 바이오폴리머가 지니는 생체적합성 (biocompatibility), 생분해성 (biodegradability), 항균성 (antibacterial activity) 등의 특성은 생의학 (biomedical) 분야에서의 응용에 있어서 매우 중요한 역할을 하고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (84)

  1. Khor, E. and L. Lim (2003) Implantable applications of chitin and chitosan. Biomaterials. 24: 2339-2349. 

  2. Schiffman, J. D. and C. L. Schauer (2008) A Review: Electrospinning of biopolymer nanofibers and their applications. Polym. Rev. 48: 317-352. 

  3. Lee, S. H., M. Miyauchi, J. S. Dordick, and R. J. Linhardt (2010) Preparation of biopolymer-based materials using ionic liquids for the biomedical application. pp. 115-134. In: S. V. Malhotra (ed.) Ionic Liquid Applications: Pharmaceuticals, Therapeutics, and Biotechnology. ACS symp. Ser. Oxford University Press, USA. 

  4. Brown, R. M. (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J. Polym. Sci. Pol. Chem. 42: 487-495. 

  5. Steinbuchel, A. and R. H. Marchessault (2005) Biopolymers for Medical and Pharmaceutical Applications. pp. 329-382. Wiley-VCH: GmbH&Co.KGaA, Weinheim, Germany. 

  6. Yamanaka, S., K. Watanabe, and Y. Suzuki (1990) Hollow microbial cellulose, process for preparation thereof. and artificial blood vessel formed of said cellulose. European Patent 0396344A2. 

  7. Eisele, S., H. P. T. Ammon, R. Kindervater, A. Grobe, and W. Gopel (1994) Optimized biosensor for whole blood measurements using a new cellulose based membrane. Biosens. Bioelectro. 9: 119-124. 

  8. Rosenau, T., A. Potthast, I. Adorjan, A. Hofinger, H. Sixta, H. Firgo, and P. Kosma (2002) Cellulose solutions in N-methylmorpholine-N-oxide (NMMO). Cellulose 9: 283-291. 

  9. Strlic, M. and J. Kollar (2003) Size exclusion chromatography of cellulose in LiCl/N,N-dimethylacetamide. J. Biochem. Biophys. Methods 56: 265-279. 

  10. Swatloski, R. P., S. K. Spear, J. D. Holbrey, and R. D. Rogers (2002) Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 124: 4974-4975. 

  11. Yan, L. and K. Ishihara (2008) Graft copolymerization of 2-methacryloyloxyethyl phosphorylcholine to cellulose in homogeneous media using atom transfer radical polymerization for providing new hemocompatible coating materials. J. Polym. Sci. Part A: Polym. Chem. 46: 3306-3313. 

  12. Chow, K. S., E. Khor, E., and A. Wan (2001) Porous chitin matrices for tissue engineering: fabrication and in vitro cytotoxic assessment. J. Polym. Res. 8: 27-35. 

  13. Uragami, T., K. Kurita, and T. Fukamizo (2001) Chitin and chitosan in life Science. pp. 27-320. Kodansha Scientific Ltd., Tokyo, Japan. 

  14. Wu, Y., T. Sasaki, S. Irie, and K. Sakurai (2008) A novel biomass-ionic liquid platform for the utilization of native chitin. Polymer 49: 2321-2327. 

  15. Linhardt, R. J. (1991) Heparin: An important drug enters its seventh decade. Chem. Indus. 2: 45-50. 

  16. Linhardt, R. J. and N. S. Gunay (1999) Production and Chemical processing of low molecular weight heparins. Sem. Thromb. Hem. 25: 5-16. 

  17. Murugesan, S., J. Xie, J., and R. J. Linhardt (2008) Immobilization of heparin-approaches and applications. Curr. Top. Med. Chem. 8: 80-100. 

  18. Park, T. J., S. Murugesan, and R. J. Linhardt (2010) Cellulose composites prepared using ionic liquids (ILs)- Blood compatibility to batteries. pp. 133-152. In: K. Edgar, T. Heinze, and C. Buchanan (eds.) Polysaccharide Materials. ACS symp. Ser. Oxford University Press, USA. 

  19. Murugesan, S., T. J. Park, H. C. Yang, S. Mousa, and R. J. Linhardt (2006) Nano-based neoproteoglycans - Blood compatible carbon nanotubes. Langmuir 22: 3461-3463. 

  20. Li, Y., K. G. Neoh, L. Cen, and E. T. Kang, (2003) Physicochemical and blood compatibility characterization of polypyrrole surface functionalized with heparin. Biotechnol. Bioeng. 84: 305-313. 

  21. Oliveira, G. B., L. B. Carvalho, and M. P. C. Silva (2003) Properties of carbodiimide treated heparin. Biomaterials 24: 4777-4783. 

  22. Phillips, D. M., L. F. Drummy, D. G. Conrady, D. M. Fox, R. R. Naik, M. O. Stone, P. C. Trulove, H. C. De Long, and R. A. Mantz (2004) Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids. J. Am. Chem. Soc. 126: 14350-14351. 

  23. Phillips, D. M., L. F. Drummy, R. R. Naik, H. C. De Long, D. M. Fox, P. C. Trulove, and R. A. Mantz, R. A. (2005) Regenarated silk fiber wet spinning from an ionic liquid solution. J. Mater. Chem. 15: 4206-4208. 

  24. Gupta, M. K., S. K. Khokhar, D. M. Phillips, L. A. Sowards, L. F. Drummy, M. P. Kadakia, R. R. Naik (2007) Patterned silk films cast from ionic liquid solubilized fibroin as scaffolds for cell growth. Langmuir 23: 1315-1319. 

  25. Sheldon, R. A., R. M. Lau, M. J. Sorgedrager, and F. van Rantwijk (2002) Biocatalysis in ionic liquids. Green Chem. 4: 147-151. 

  26. Freemantle, M. (1998) Designer solvents - Ionic liquids may boost clean technology development. Chem. Eng. News 76: 32-37. 

  27. Lee S. H., T. J. Simmons, T. J. Park, M. Miyauchi, S. S. Bale, R. Pangule, J. Miao, J. Bult, J. G. Martin, J. S. Dordick, and R. J. Linhardt (2010) Preparation of synthetic wood composite using ionic liquid. Wood Sci. Technol. in press. 

  28. El Seoud, O. A., A. Koschella, L. C. Fidale, S. Dorn, S., and T. Heinze (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromol. 8: 2629-2647. 

  29. Mantz, R. A., D. M. Fox, J. M. Green, P. A. Fylstra, H. C. De Long, and P. C. Trulove (2007) Dissolution of biopolymers using ionic liquids. Z. Naturforsch. A.-J. Phys. Sci. 62: 275-280. 

  30. Chheda, J. A. and J. A. Dumesic (2007) An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomassderived carbohydrates. Catal. Today. 123: 59-70. 

  31. Murugesan, S. and R. J. Linhardt (2005) Ionic liquids in carbohydrate chemistry - current trends and future directions. Curr. Org. Synth. 2: 437-451. 

  32. Liebert, T. and T. Heinze. (2008) Interactions of ionic liquids with polysaccharides. 5. Solvents and reaction media for the modification of cellulose Biores. 3: 576-601. 

  33. Moulthrop, J. S., R. P. Swatloski, G. Moyna, and R. D. Rogers (2005) High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem. Commun. 1557-1559. 

  34. Heinze, T., K. Schwikal, and S. Barthel (2005) Ionic Liquids as Reaction Medium in Cellulose Functionalization. Macromol. Biosci. 5: 520-525. 

  35. Ren, Q., J. Wu, J. Zhang, and J. S. He (2003) Synthesis of 1-allyl,3-methylimidazolium-based room-temperature ionic liquid and preliminary study of its dissolving cellulose. Acta Polym. Sin. 448-451. 

  36. Mikkola, J. P., A. Kirilin, J. C. Tuuf, A. Pranovich, B. Holmbom, L. M. Kustov, D. Y. Murzin, and T. Salmi (2007) Ultrasound enhancement of cellulose processing in ionic liquids: from dissolution towards functionalization. Green Chem. 9: 1229-1237. 

  37. Fukaya, Y., A. Sugimoto, and H. Ohno (2006) Superior solubility of polysaccharides in low viscosity, polar and halogen-free 1,3-dialkylimidazolium formates. Biomacromol. 7: 3295-3297. 

  38. Fukaya, Y., K. Hayashi, M. Wada, and H. Ohno (2008) Cellulose dissolution with polar ionic liquids under mild conditions. Green Chem. 10: 44-46. 

  39. Zhao, H., G. A. Baker, Z. Y. Song, O. Olubajo, T. Crittle, D. Peters, (2008) Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem. 10: 696-705. 

  40. Kosan, B., C. Michels, and F. Meister (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15: 59-66. 

  41. Barthel, S. and T. Heinze T (2006) Acylation and carbanilation of cellulose in ionic liquids. Green Chem. 8: 301-306. 

  42. Lee S. H., T. V. Doherty, R. J. Linhardt, and J. S. Dordick (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol. Bioeng. 102: 1368-1376. 

  43. Sun N., M. Rahman, Y. Qin, M. L. Maxim, H. Rodriquez, and R. D. Rogers (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl- 3-methylimidazolium acetate. Green Chem. 11: 646-655. 

  44. Xie, H. B., S. B. Zhang, and S. H. Li (2006) Chitin and chitosan dissolved in ionic liquids as reversible sorbents of $CO_2$ . Green Chem. 8: 630-633. 

  45. Lu, X. B., J. Q. Hu, X. Yao, X.; Z. P. Wang, J. H. Li (2006) Composite system based on chitosan and roomtemperature ionic liquid: Direct electrochemistry and electrocatalysis of hemoglobin. Biomacromol. 7: 975-980. 

  46. Lu, X. B.; Q. Zhang, L. Zhang, and J. H. Li, (2006) Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid. Electrochem. Commun. 8: 874-878. 

  47. Wang, Q., H. Tang, Q. J. Me, L. Tan, Y. Y. Zhang, B. Li, and S. Z. Yao (2007) Room-temperature ionic liquids/ multi-walled carbon nanotubes/chitosan composite electrode for electrochemical analysis of NADH. Electrochimi. Acta 52: 6630-6637. 

  48. Murugesan, S., J. M. Wiencek, R. X. Ren, and R. J. Linhardt (2006) Benzoate-based room temperature ionic liquids - Thermal properties and glycosaminoglycan dissolution. Carbohyd. Polym. 63: 268-271. 

  49. Park, T. J., M. Weiwer, X. J. Yuan, S. N. Baytas, E. M. Munoz, S. Murugesan, and R. J. Linhardt (2007) Glycosylation in room temperature ionic liquid using unprotected and unactivated donors. Carbohyd. Res. 342: 614. 

  50. Viswanathan, G., S. Murugesan, V. Pushparaj, O. Nalamasu, P. M. Ajayan, and R. J. Linhardt (2006) Preparation of biopolymer fibers using electrospinning from room temperature ionic liquids. Biomacromolecules 7: 415. 

  51. Yan, R., F. Zhao, J. Li, F. Xiao, S. Fan, and B. Zeng (2007) Direct electrochemistry of horseradish peroxidase in gelatin-hydrophobic ionic liquid gel films. Electrochimi. Acta 52: 7425-7431. 

  52. Turner, M. B., S. K. Spear, J. D. Holbrey, and R. D. Rogers (2004) Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromol. 5: 1379-1384. 

  53. Turner, M. B., S. K. Spear, J. D. Holbrey, D. T. Daly, and R. D. Rogers (2005) Ionic liquid-reconstituted cellulose composites as solid support matrices for biocatalyst immobilization. Biomacromol. 6: 2497-2502. 

  54. Poplin, J. H., R. P. Swatloski, J. D. Holbrey, S. K. Spear, A. Metlen, M. Gratzel, M. K. Nazeeruddin, and R. D. Rogers (2007) Sensor technologies based on a cellulose supported platform. Chem. Commun. 2025-2027. 

  55. Bagheri, M., H. Rodriguez, R. P. Swatloski, S. K. Spear, D. T. Daly, and R. D. Rogers (2008) Ionic Liquid- Based Preparation of Cellulose-Dendrimer Films as Solid Supports for Enzyme Immobilization. Biomacromol. 9: 381-387. 

  56. Tsioptsias, C. and C. Panayiotou (2008) Preparation of cellulose-nanohydroxyapatite composite scaffolds from ionic liquid solutions. Carbohydr. Polym. 74: 99-105. 

  57. Pushparaj V. L., S. M. Manikoth, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R. J. Linhardt, O. Nalamasu, and P. M. Ajayan, (2007) Flexible Nanocomposite Thin Film Energy Storage Devices. PNAS 104: 13574-13577. 

  58. Murugesan, S., S. Mousa, A. Vijayaraghavan, P. M. Ajayan, and R. J. Linhardt (2006) Ionic liquid derived blood compatible composite membranes for kidney dialysis. J. Biomed. Mater. Res. B: Appl. Biomater. 79: 298-304. 

  59. Park, T. J., S. H. Lee, T. J. Simmons, J. G. Martin, S. Mousa, E. A. Snezhkova, V. V. Sarnatskaya, S. G. Nikolaev, and R. J. Linhardt (2008) Biocompatible Activated Charcoal Composites For Drug Detoxification Prepared Using Room Temperature Ionic Liquids. Chem. Commun. 5022-5024. 

  60. Chandy, T. and C. P. Sharma, (1998) Activated charcoal microcapsules and their applications. J. Biomater. Appl. 13: 128-157. 

  61. Perepelkin, K. E. (2007) Coating composition, weld parameter and consumable conditioning effects on weld metal composition in shielded metal arc welding. Fibre Chem. 39: 163-172. 

  62. Zhang, H., Z. G. Wang, and Z. N. Zhang (2007) Regenerated cellulose/Multiwalled carbonnanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-Allyl-3-methylimidazolium Chloride. Adv. Mater. 19: 698-704. 

  63. Sun, N., R. P. Swatloski, and M. L. Maxim (2008) Magnetite-embedded cellulose fibers prepared from ionic liquid. J. Mater. Chem. 18: 283-290. 

  64. Zhao, T., H. Wang, and Y. Zhang (2008) The preparation and characterization of poly(m-phenyleneisophthalamide) fibers using ionic liquids Int. J. Mol. Sci. 8: 680-685. 

  65. Zhang, Y. M., X. P. Tu, and W. Liu (2008) Diffusion dynamics of ionic liquids during the coagulation of solution spinning for acrylic fibers. Polym. Eng. Sci. 48: 184-190. 

  66. Lee, C. K., S. R. Shin, S. H. Lee, H. H. Jeon, I. So, T. M. Kang, S. I. Kim, J. Y. Mun, S. S. Han, G. M. Spinks, G. G. Wallace, and S. J. Kim, (2008) DNA hydrogel fiber with self-entanglement prepared by using an ionic liquid. Angew. Chem. Int. Ed. 47: 2470-2474. 

  67. Xie, H. B., S. H. Li, and S. B. Zhang (2005) Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers. Green Chem. 7: 606-608. 

  68. Lee, J., R. M. Broughton, and S. D. Worley (2008) Antimicrobial polymeric materials; Cellulose and m-aramid composite fibers. AATCC Review 8: 43-48. 

  69. Sill, T. J. and H. A. von Recum (2008) Electrospinning: Applications in drug delivery and tissue engineering. Biomater. 29: 1989-2006. 

  70. Rutledge, G. C., S. V. Fridrikh (2007) Formation of Fibers by Electrospinning. Adv. Drug Delivery Rev. 59: 1384-1391. 

  71. Costolo, M. A., J. D. Lennhoff, and R. Pawle (2008) A nonlinear system model for electrospinning sub-100 nm polyacrylonitrile fibres. Nanotechnology 19: 035707. 

  72. Zhang, C. X., X. Y. Yuan, and L. L. Wu (2005) Study on morphology of electrospun poly(vinyl alcohol) mats. Eur. Polym. J. 41: 423-432. 

  73. Xu, S. S., J. Zhang, and A. H. He (2008) Electrospinning of native cellulose from nonvolatile solvent system. Polymer 49: 2911-2917. 

  74. Sui S., J. Yuan J., W. Yuan, and M. Zhou (2008) Preparation of Cellulose Nanofibers/Nanoparticles via Electrospray. Chem. Lett. 37: 114-115. 

  75. Yang, W., H. Yu, and M. F. Zhu. (2006) Poly (mphenylene isophthalamide) ultrafine fibers from an ionic liquid solution by dry-jet-wet-electrospinning. J. Macromol. Sci. Part B: Phys. 45: 573-579. 

  76. Jia, J. B., B. Q. Wang, A. G. Wu, G. J. Cheng, Z. Li, and S. J. Dong (2002) A method to construct a third-generation horseradish peroxidase biosensor: Self-assembling gold nanoparticles to three-dimensional sol-gel network. Anal. Chem. 74: 2217-2229. 

  77. Simionsecu, C., M. Popa, and S. Dumitru (1987) Immobilization of Tnvertase on the Diazonium Salt of 4-Aminobenzoylcellulose. Biotechnol. Bioeng. 29: 361-365. 

  78. Iwasaki, Y., C. Nakagawa, M. Ohtomi, and K. Akiyosi (2004) Novel biodegradable polyphosphate cross-linker for making biocompatible hydrogel. Biomacromol. 5: 1110-1115. 

  79. Buzzeo, M. C., R. G. Evans, and R. G. Compton (2004) Non-haloaluminate room-temperature ionic liquids in electrochemistry-A review. Chem. Phys. Chem. 5: 1106-1120. 

  80. Zhao, F., X. E. Wu, M. K. Wang, Y. Liu, L. X. Gao, and S. J. Dong (2007) Electrochemical and bioelectrochemistry properties of room-temperature ionic liquids and carbon composite materials. Anal. Chem. 76: 4960-4967. 

  81. Li, J. W., J. J. Yu, F. Q. Zhao, and B. Z. Zeng (2007) Direct electrochemistry of glucose oxidase entrapped in nano gold particles-ionic liquid-N,N-dimethylformamide composite film on glassy carbon electrode and glucose sensing. Anal. Chem. 587: 33-40. 

  82. Sun, W., D. Wang, R. Gao, and K. Jiao (2007) Direct electrochemistry and electrocatalysis of hemoglobin in sodium alginate film on a [BMIM][ $PF_6$ ] modified carbon paste electrode. Electrochem. Commun. 9: 1159-1164. 

  83. Sun, W., D. Wang, D., J. Zhong, and K. Jiao (2008) Electrocatalytic activity of hemoglobin in sodium alginate/ $SiO_2$ nanoparticle/ionic liquid [BMIM][ $PF_6$ ] composite film. J. Solid State Electrochem. 12: 655-661. 

  84. Ding, C., M. Zhang, F. Zhao, and S. Zhang (2008) Disposable biosensor and biocatalysis of horseradish peroxidase based on sodium alginate film and room temperature ionic liquid. Anal. Biochem. 378: 32-37. 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로