$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

오이생육, 칼슘, 옥살산 및 무기성분 함량 및 칼슘-옥살산염 형성에 대한 칼슘처리 효과
Influence of Calcium Supply on the Growth, Calcium and Oxalate Contents, Mineral Nutrients and Ca-oxalate Crystal Formation of Cucumber 원문보기

韓國土壤肥料學會誌 = Korean journal of soil science & fertilizer, v.43 no.4, 2010년, pp.471 - 477  

성좌경 (국립농업과학원 토양비료관리과) ,  이수연 (국립농업과학원 토양비료관리과) ,  이예진 (국립농업과학원 토양비료관리과) ,  김록영 (국립농업과학원 토양비료관리과) ,  이주영 (국립농업과학원 토양비료관리과) ,  이종식 (국립농업과학원 토양비료관리과) ,  장병춘 (국립농업과학원 토양비료관리과)

초록
AI-Helper 아이콘AI-Helper

식물체 내에서 칼슘의 역할에 대하여 광범위하게 알려져 있지만, 다량원소의 흡수와 축적 및 옥살산 합성에 대한 칼슘의 영향에 대한 연구는 미비한 실정이다. 본 연구는 칼슘 결핍 또는 과잉에 따른 오이생육, 다량원소 흡수, 옥살산 합성 및 칼슘-옥살산 crystal 형성에 대하여 알아보고자 수행하였다. 칼슘의 결핍 또는 과잉조건하의 오이 생육과 다량원소의 흡수는 크게 저해되는 경향을 보였으며, 특히 마그네슘과는 정반대의 흡수패턴을 보였다. 칼슘처리의 증가는 오이 잎과 뿌리 중 옥살산 함량을 증가시켰으며, 오이 엽 중 칼슘과 옥살산과의 상관관계는 매우 높은 것으로 나타났다 (0.91, P<0.001). 칼슘-옥살산 crystal의 주요 형태는 prismatic 이었고, crystal은 칼슘 처리량이 증가함에 따라 많이 생성되었다. 또한 crystal의 주요 구성성분은 칼슘, 나트륨 및 염소로 나타났다.

Abstract AI-Helper 아이콘AI-Helper

Although the roles of calcium in plant are widely known, little is known about on an antagonistic effect of macro elements, oxalate biosynthesis and main shape of crystal in cucumber plant organs. Seeds of cucumber (Cucumis sativus cv. Ijoeunbackdadagi) were germinated in perlite tray supplied with ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Dry weight determinations and chemical analysis The extraction and measurement of macro-nutrients were determined according to Walinga method (1989). Five randomly selected per treatment were divided into leaves, stem, and roots, and dried in an oven at 70℃ for 2 days to determine dry weights and elemental concentrations. Chemical analyses were carried out on dry weight basis with three repeats.
  • 4). However, it was expected that Ca played different roles depending on plant parts considering no detection of oxalate in stem and highest levelsin roots, and it was needed to analyze insoluble oxalate to correctly interpret the relationship between Ca and oxalate.
  • The nutrient solution was replaced every 3 days. Plants were harvested between 13:00 and 14:00 at 7 and 14 days after treatment, immediately separated into leaves, stem and roots, and used for further analysis.

대상 데이터

  • Plant culture and treatments This study was conducted in a glass house at NAAS, RDA in 2009. Seeds of cucumber (Cucumis sativus cv.

데이터처리

  • Data analysis Statistical analysis of data was carriedout using ANOVA. To determine the significance of the difference between the means of treatments, least significant difference (LSD) was computed at the 5 % probability level (SAS 9.
  • 4. Pearson correlation coefficient (n=21) between Ca and Mg and between Ca and acid-soluble oxalate in cucumber leaves exposed for 14 days under different Ca levels in media.​​​​​​​
  • To determine the significance of the difference between the means of treatments, least significant difference (LSD) was computed at the 5 % probability level (SAS 9.1), and Pearson’s correlation coefficient analysis was performed to know the relationship between Ca and Mg, and between Ca and oxalate.

이론/모형

  • Acid-soluble oxalate determination Acid-soluble oxalate was analyzed according to Libert (1981) and Yu et al. (2002) methods. Fresh samples (0.
  • Dry weight determinations and chemical analysis The extraction and measurement of macro-nutrients were determined according to Walinga method (1989). Five randomly selected per treatment were divided into leaves, stem, and roots, and dried in an oven at 70℃ for 2 days to determine dry weights and elemental concentrations.
  • 5 mM). The compositional analysis of isolated crystals was done by the EDS technique. All intensities from the EDS-profiles showed a chemical composition typically obtained for Ca oxalate crystal: Ca, Na and Cl.
본문요약 정보가 도움이 되었나요?

참고문헌 (30)

  1. Borchert, R. 1985.Calcium-induced patterns of calcium-oxalate crystals in isolated leaflets of gleditsia triacanthos L. and Albizia julibrissin Durazz. Planta 165:301-310. 

  2. Borchert. R. 1986. Calcium acetate induces calcium uptake and formation of calcium-oxalate crystals in isolated leaflets of Gleditsia tracanthos L. Planta 168:571-578. 

  3. DeSilva D.L.R., A.M. Hetherington. and T. A. Mansfield. 1996. Where does all the calcium go?. Evidence of an important regulatory role for trichomes in two calcicoles. Plant Cell and Environment 19:880-886. 

  4. Foster, A.S. 1956. Plant idioblasts: remarkable examples of cell specialization. Protoplasma 46: 184-193. 

  5. Franceschi. V.R. 1989. Calcium Oxalate formation is a rapid and reversible process in Lemna minor L. Protoplasma 148:130-137. 

  6. Franceschi, V.R. 2001. Function of calcium oxalalccrystals in plants. Trends Plant Sci. 6:331 

  7. Franceschi, V.R. and H.T. Horner. 1980. Calcium oxalate crystals in plants. Botanical Review. 46:361-427. 

  8. Gallaher, R.N. 1975. The occurrence of calcium in plant tissue as crystals of calcium oxalate. Commun Soil Sci. Plant Anal. 6:315-330. 

  9. Gallaher, R.N. and J.B. Jones. 1976. Total extractable, and oxalate calcium and other elements in normal and mouse ear pecan tree tissues. J. Am. Soc. Hortic. Sci. 101:6922- 6926. 

  10. Hodgkinson, A. 1977. Oxalic acid metabolism in higher plants, in: Hodgkinson, A. (Ed.), Oxalic acid biology and medicine. Academic Press. New York. pp.131-158. 

  11. Homer, H.T. and E. Zinder-Frank, 1982a. Calcium oxalate crystals and crystal cells in the leaves of Rhynchosia caribaes (Leguminosae: Papilionoideae). Protoplasma 111: 10-18. 

  12. Horner, H.T. and E. Zindler-Frank. 1982b. Histochemical. Spectroscopic, and x-ray diffraction identifications of the two hydration forms of calcium oxalate crystals in three legumes and Begonia. Can. J. Bot.60:1021-1027. 

  13. Jauregui-Zuniga, D., J.P. Reyes-Grajeda. J.D. Sepulveda-Sanchez, J.R. Whitaker, and A. Moreno. 2003. Crystallochemical characterization of calcium oxalate crystals isolated from seed coats of Phaseolus vulgaris and leaves of Vitis vinifera. J. of Plant Physiol. 160:239-245. 

  14. Keates. S.A., N. Tarlyn, F.A. Loewus. and V.R. Franceschi. 2000. $_{L}-Ascorbic$ acid and $_{L}- galactose$ arc sources of oxalic acid and calcium oxalate in Pistia stratiotes., Phytochemistry 53:433-440. 

  15. Kinzel. H. 1989. Calcium in the vacuoles and cell walls of plant tissue. Flora 182:99-125. 

  16. Kirkby. E.A. and D.J. Pilbeam. 1984. Calcium as a plant nutrient. Plant Cell and Environment 7:397-405. 

  17. Kostman, T.A., N.M. Tarlyn. F.A. Loewus. and V.R. Franceschi. 2001. Biosynthesis of $_{L}-ascorbic$ acid and conversion of carbons 1 and 2 of $_{L}-ascorbic$ acid to oxalic acid occurs within individual calcium oxalate crystal idioblasts. Plant Physiol. 125:634-640. 

  18. Li. X.X. and V.R. Franceschi 1990. Distribution of peroxisomes and glycolate metabolism in relation to calcium oxalate formation in Lemma minorL. Eur. J. Cell Biol. 51:9-16. 

  19. Libert, B. 1981. Rapid determination of oxalate acid by reverse-phase high performance liquid chromatography. Journal of Chromatography 210:540-543. 

  20. Libert. B. and V.R. Franceschi. 1987. Oxalate in crop plants. J. Agric. Food Chem. 35:926-928. 

  21. Marschner. H. 1995. Mineral nutrition of higher plants. Acad. Press. London 

  22. Sander, D., J. Pelloux, C. Brownlee. and J.F. Harper. 2002. Calcium at the crossroads of signaling. Plant Cell 14:401-417. 

  23. Shouwu. G., M.D. Ward. and J.A. Wesson. 2002. Direct visualization of calcium oxalate monohydrate crystallization and dissolution with atomic force microscopy and the role of polymeric additives. Langmuir 18:4284-4291. 

  24. Walinga, I., W. Van Vark, V.J.G. Houba. and J.J. Vander Lee. 1989. Soil and plant analysis : Part 7. Plant analysis procedures. Wageningen Agricultural Univ., ageningen, The Netherlands pp.264 

  25. Volk . G.M., V.M. Lynch- Holm, T.A. Kostman,and V.R. Franceschi. 2002. The role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes Ieaves. Plant Biol. 4:34-45. 

  26. White. P.J. and M.R. Broadley. 2003. Calcium in plants. Annals of Botany 92:487-511. 

  27. Yu L, X.X. Peng, C. Yang. Y.H. Liu, and Y.P. Fan. 2002. Determination of oxalaic acid in plant tissue and root exudates by reversed phase high performance1iquid chromatography. Chinese Journal of Analytical Chemistry 30:1119-1122. 

  28. Zindler-Frank. E. 1975. On the formation of the pattern of crystal idioblasts in Canavalia ensiformis D.C.: Vii. Calcium and oxalate content of the leaves in dependence of calcium nutrition. Z. Pflanzenphysiol. 77:80-85. 

  29. Zindler-Frank, E., R. Honow, and A. Hesse. 2001. Calcium and oxalate content of the leaves of Phaseolus vulgaris at different calcium supply in relation to calcium oxalate crystal formation. J. of Physiol. 158:139-144. 

  30. Zinder-Frank, E., E. Wichmann, and M. Korneli . 1988, Cells with crystals of calcium oxalate in the leaves of Phaseolus ulgaris - a comparison with those in Canavalia ensiformis. Bot. Acta 101:246-253. 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로