$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 콩의 삼투 저항성 검정에 있어서 Non-photochemical quenching의 적용
Application of Non-photochemical Quenching on Screening of Osmotic Tolerance in Soybean Plants 원문보기

韓國土壤肥料學會誌 = Korean journal of soil science & fertilizer, v.43 no.3, 2010년, pp.390 - 399  

박세준 (한경대학교 식물생태화학연구소) ,  김현희 (한경대학교 식물생태화학연구소) ,  고태석 (한경대학교 식물생태화학연구소) ,  심명룡 (한경대학교 식물생태화학연구소) ,  유성녕 (세종데이터해석연구원) ,  박소현 (세종데이터해석연구원) ,  김태경 (한경대학교 식물생의약전공) ,  엄기철 (세종데이터해석연구원) ,  홍선희 (고려대학교 환경생태공학부) ,  김태완 (한경대학교 식물생태화학연구소)

초록
AI-Helper 아이콘AI-Helper

한발과 염 스트레스에 대한 콩의 저항성 검정에 있어서 Non-photochemical quenching (NPQ)을 적용하기 위하여, 저항성 콩 (신팔달콩 2호)와 대조구 콩 (태광콩)을 이용하여 제한적 관수 (50 m/pot/day) 와 염 (200 mmol NaCl) 처리를 한 후, 엽록소 형광반응의 변수, maximum efficiencies of photosystem II photochemistry ($F_v/F_m$), efficiencies of photosystem II photochemistry (${\Phi}_{PSII}$), NPQ와 $CO_2$ 동화율 ($P_N$) 을 측정하였다. 콩 두 품종의 엽 수분포텐셜은 한발처리에서 -0.2 MPa에서 -0.8 MPa로, 염처리에서는 -0.7 MPa에서 -1.7 MPa로 감소하였다. 염처리에서 엽 수분함량의 감소는 신팔달콩 2호에서 적었다. 두 품종 모두 엽의 수분포텐셜이 감소함에 따라 $F_v/F_m$은 변화가 없었으며, ${\Phi}_{PSII}$$P_N$는 감소하였다. NPQ의 경우, 신팔달콩 2호은 한발과 염처리에 모두에서 반응이 나타난 반면, 태광콩에서는 한발처리에서만 나타났다. 두 품종의 모든 처리에서 ${\Phi}_{PSII}$$P_N$간에 정의 상관 관계를 보였으나, $P_N$의 감소에 대한 ${\Phi}_{PSII}$의 감소 정도가 신팔달콩 2호에서 적었다. 또한 삼투처리에 따른 ${\Phi}_{PSII}$의 감소와 NPQ의 증가는 신팔달콩 2호에서만 나타나 ${\Phi}_{PSII}$와 NPQ 간의 부의 관계가 유지된 반면, 태광콩에서는 염처리에서 이들간의 연관성이 없었다. 따라서 본 연구는 삼투 저항성의 검정에 있어서 엽록소 형광반응의 단일변수($F_v/F_m$, ${\Phi}_{PSII}$, 및 NPQ)의 이용보다 ${\Phi}_{PSII}$와 NPQ 의 상호관계 분석이 더 유효한 것을 제시하였다.

Abstract AI-Helper 아이콘AI-Helper

Non-photochemical quenching (NPQ) values for utilizing them to detect osmotic tolerance in plants were examined with two different soybean cultivars, an osmotic tolerant soybean (Shinpaldalkong 2) and a control soybean (Taekwangkong). Two different stresses were applied to the cultivars as the restr...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • In the previous experiment for screening environmental stress tolerant soybean cultivars breed in Korea, we found that Shinpaldalkong 2 is more drought tolerance than Taekwangkong on the apparent growth characteristics and the responses of chlorophyll fluorescence parameters. Therefore, the purposes of this experiment are to closely search the chlorophyll fluorescence parameter for screening tolerant cultivar and to find how different responses of photochemical and non-photochemical quenching in tolerant soybean occur under moderate osmotic stress conditions. The reasons for using two different stressors, drought and salt, as osmotic treatments were that (1) the control of moderate drought condition in pot would not easy by withholding or restriction of watering because plant wilting instantly accelerated around the wilting point, (2) drought treatment by restricted water supply could induce a mild osmotic stressful condition, and (3) salt treatments could induce the moderate osmotic stressful condition within a few days without salt specific effects (Munns 2002).
본문요약 정보가 도움이 되었나요?

참고문헌 (55)

  1. Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Ann. Rev. Plant Physiol. Plant. mol. Biol. 50:601-639. 

  2. Backhausen, J.E., M. Klein, M. Klocke, S. Jung, and R. Scheibe. 2005. Salt tolerance of potato (Solanum tuberosum L. var. Desiree) plants depends on light intensity and air humidity. Plant Sci. 169:229-237. 

  3. Baker, N.R. and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55:1607-1621. 

  4. Bartels, D. and R. Sunkar. 2005. Drought and salt tolerance in plants. Critical Rev. Plant Sci. 24:23-58. 

  5. Belkhodja, R., F. Morales, A. Abadia, H. Medrano, and J. Abadia. 1999. Effects of salinity on chlorophyll fluorescence and photosynthesis of barley (Hordeum vulgare L.) grown under a triple-line-source sprinkler system in the field. Photosynthetica 36:375-387. 

  6. Biehler, K., S. Haupt, J. Beckmann, H. Fork, and T.W. Becker. 1997. Simultaneous $CO_2$ - and ${16}^O_2/{18}^O_2$ -gas exchange and fluorescence measurements indicate differences in light energy dissipation between the wild type and the phytochromedeficient aurea mutant of tomato during water stress. J. Exp. Bot. 48:1439-1449. 

  7. Bilger, W., and O. Bjorkman. 1990. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res. 25:173-185. 

  8. Chaves, M.M., J.S. Pereira, J. Maroco, M.L. Rodriques, C.P.P. Ricardo, M.L. Osorio, I. Carvalho, T. Faria, and C. Pinheiro. 2002. How plants cope with water stress in the field. photosynthesis and growth. Ann. Bot. 89:907-916. 

  9. Clavel, D., O. Diouf, J.L. Khalfaoui, and S. Braconnier. 2006. Genotypes variations in fluorescence parameters among closely related groundnut (Arachis hypogaea L.) lines and their potential for drought screening programs. Field Crops Res. 96:296-306. 

  10. Colom, M.R. and C. Vazzana. 2003. Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants. Environ. Exp. Bot. 49:135-144. 

  11. Cornic G. and C. Fresneau. 2002. Photosynthetic carbon reduction and carbon oxidation cycles are main electron sinks for photosystem II activity during a mild drought. Ann. Bot. 89:887-894. 

  12. Cornic, G. 2000. Drought stress inhibits photosynthesis by decreasing stomatal aperture ? not by affecting ATP synthesis. Trends Plant Sci. 5:187-188. 

  13. Correia, M.J., M.L. Osorio, J. Osorio, I. Barrote, M. Martins, and M.M. David, 2006. Influence of transient shade periods on the effects of drought on photosynthesis, carbohydrate accumulation and lipid peroxidation in sunflower leaves. Environ. Exp. Bot. 58:75-84. 

  14. Demiral, T. and I. Turkan. 2006. Exogenous glycinebetaine affects growth and praline accumulation and retards senescence in two rice cultivars under NaCl stress. Environ. Exp. Bot. 56:72-79. 

  15. Demmig-Adams, B. and W.W. Adams. 2006. III: Photoprotection in an ecological context: The remarkable complexity of thermal energy dissipation. New Phytologist 172:11-21. 

  16. Demmig-Adams, B. and W. W.Adams. 1996. III: The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1:21-26. 

  17. Flexas, J., J. Bota, J. Galmes, H. Medrano, and M. Ribas-Carbo. 2006. Keeping a positive carbon balance under adverse conditions: responses pf photosynthesis and respiration to water stress. Physiol. Plant. 127:343-352. 

  18. Flexas, J. and H. Medrano. 2002. Drought-inhibition of photosynthesis in $C_3$ Plants: Stomatal and non-stomatal limitations revisited. Ann. Bot. 89:183-189. 

  19. Foyer, C.H. and G. Noctor. 2000. Oxygen processing in photosynthesis: regulation and signalling. New Phytologist 146:359-388. 

  20. Gentry, B., J.M. Briantais, and N.R. Baker. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990:87-92. 

  21. Gilmore, A.M. 1997. Mechanistic aspects of xanthophyll cycledependent photoprotection in higher plant chloroplasts and leaves. Physiol. Plant. 99:197-209. 

  22. Holt, N.E., G.R. Fleming, and K.K. Niyogi. 2004. Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry 43:8281-8289. 

  23. Havaux, M. 1998. Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci. 3:147-151. 

  24. Jiang, Q., D. Roche, T.A. Monaco, and S. Durham. 2006. Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity. Field Crops Res. 96:269-278. 

  25. Jung, S. 2004. Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought. Plant Sci. 166:459-466. 

  26. Kao, W.Y., T.T. Tsai, and C.N. Shin. 2003. Photosynthetic gas exchange and chlorophyll a fluorescence of three wild soybean species in response to NaCl treatments. Photosynthetica 41:415-419. 

  27. Kocheva, K., P. Lambrev, G. Georgiev, V. Goltsev, and M. Karabaliev. 2004. Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress. Bioelectrochemistry 63:121-124. 

  28. Laisk, A., V. Oja, B. Rasulov, H. Eichelmann, and A. Sumberg. 1997. Quantum yields and rate constants of photochemical and nonphotochemical excitation quenching. Plant Physiol. 115:803-815. 

  29. Lauriano, J.A., J.C. Ramalho, F.C. Lidon, and M. do Ceu Matos. 2006. Mechanisms of energy dissipation under water stress. Photosynthetica 44:404-410. 

  30. Lawlor, D.W. 2002. Limitation to photosynthesis in waterstressed leaves: Stomata vs. metabolism and the role of ATP. Ann. Bot. 89:871-885. 

  31. Lee, G., R.N. Carrow, and R.R. Duncan. 2004. Photosynthetic responses to salinity stress of halophytic seashore paspalum ecotypes. Plant Sci. 166:1417-1425. 

  32. Lichtenthaler, H.K. 1987. Chlorophyll and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 148: 350-382. 

  33. Lu, C. and J. Zhang. 1999. Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. J. Exp. Bot. 50:1199-1206. 

  34. M'rah, S., Z. Ouerghi, C. Berthomieu, M. Havaux, C. Jungas, M. Hajji, C. Grignon, and M. Lachaal. 2006. Effects of NaCl on the growth, ion accumulation and photosynthetic parameters of Thellungiella halophila. J. Plant Physiol. 163: 1022-1031. 

  35. Maury, P., F. Mojayad, M. Berger, and C. Planchon. 1996. Photochemical response to drought acclimation in two sunflower genotypes. Physiol. Plant. 98:57-66. 

  36. Maxwell K. and G.N. Johnson. Chlorophyll fluorescence ? a practical guide. J. Exp. Bot. 51:659-668. 

  37. Medrano, H., J.M. Escalona, J. Bota, J. Gulias, and J. Flexas. 2002. Regulation of photosynthesis of $C_3$ plants in response to progressive drought: Stomatal conductance as a reference parameter. Ann. Bot. 89:895-905. 

  38. Melkonian, J., T.G. Owens, and D.W. Wolfe. 2004. Gas exchange and co-regulation of photochemical and nonphotochemical quenching in bean during chilling at ambient and elevated carbon dioxide. Photosynth. Res. 79:71-82. 

  39. Miyashita, K., S. Tanakamaru, T. Maitani, and K. Kimura. 2005. Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environ. Exp. Bot. 53:205-214. 

  40. Morant-Manceau, A., E. Pradier, and G. Tremblin. 2004. Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress. J. Plant Physiol. 161:25-33. 

  41. Munns, R. 2002. Comparative physiology of salt and water stress. ? Plant Cell Environ. 25:239-250. 

  42. Muranaka, S., K. Shimizu, and M. Kato. 2002. A salt-tolerance cultivar of wheat maintains photosynthetic activity by suppressing sodium uptake. Photosynthetica 40:509-515. 

  43. Netondo, G.W., J.C. Onyango, and E. Beck. 2004. Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci. 44:806-811. 

  44. Niyogi, K.K. 1999. Photoprotection revised: Genetic and molecular approaches. Ann. Rev. Plant Physiol. Plant. mol. Biol. 50:333-359. 

  45. Niyogi, K.K. 2000. Safety valves for photosynthesis. Curr. Opin. Plant Biol. 3:455-460. 

  46. Niyogi, K.K., X.P. Li, V. Rosenberg, and H.S. Jung. 2005. Is PsbS the site of non-photochemical quenching in photosynthesis? J. Exp. Bot. 56:375-382. 

  47. Noctor, G., S. Veljoviv-Jovanovic, S. Driscill, L. Novitskaya, and C.H. Foyer. 2002. Drought and oxidative load of C3 plants: A predominant role for photorespiration? Ann. Bot. 89:841-850. 

  48. Ort, D.R., and N.R. Baker. 2002. A photoprotective role for $O_2$ as an alternative electron sink in photosynthesis? Curr. Opin. Plant Biol. 5:193-198. 

  49. Osorio, M.L., E. Breia, A. Rodrigues, J. Osorio, X. Le Roux, F.A. Daudet, I. Ferreira, and M.M. Chaves. 2006. Limitations to carbon assimilation by mild drought in nectarine trees growing under field conditions. Environ. Exp. Bot. 55: 235-247. 

  50. Praxedes, S.C., F. DaMatta, M.E. Loureiro, M.A.G. Ferrao, and A.T. Cordeiro. 2006. Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (Coffea canephora Pierre var. kouillou) leaves. Environ. Exp. Bot. 56:263-273. 

  51. Souza, R.P., E.C. Machado, J.A.B. Silva, A.M.M. A. Lagoa, and J.A.G. Silveira. 2004. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ. Exp. Bot. 51:45-56. 

  52. Stepien, P. and G. Klobus. 2006. Water relations and photosynthesis in Cucumis sativa L. leaves under salt stress. Biol. Plant. 50:610-616. 

  53. ?troch, M., V. ?punda, and I. Kurasova. 2004. Non-radiative dissipation of absorbed excitation energy within photosynthetic apparatus of higher plants. Photosynthetica 42:323-337. 

  54. Wingler, A., M. Mares, and N. Pourtau. 2004. Spatial patterns and metabolic regulation of photosynthetic parameters during leaf senescence. New Phytologist 161:781-789. 

  55. Yang, Y., D.A. Jiang, H.X. Xu, C.Q. Yan, and S.R. Hao. 2006. Cyclic electron flow around photosystem 1 is required for adaptation to salt stress in wild soybean species Glycine cyrtoloba ACC547. Biol. Plant. 50:586-590. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로