$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

The difference in echogenicity between cancerous and normal tissues is not quite distinguishable in ultrasound B-mode imaging. However, tumor or cancer in breast or prostate tends to be stiffer than the surrounding normal tissue. Thus, imaging the stiffness contrast between the two different tissue ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • 1'he aforementioned elasticity imaging methods apply stress mechanically or uses acoustic radiation force. Therefore, the force applied cannot be exactly determined, and the elasticity cannot be measured quantitatively.
본문요약 정보가 도움이 되었나요?

참고문헌 (40)

  1. T. Sato. Y. Yamakoshi, and T. Nakamura, "Nonlinear tissue imaging," in Proc, IEEE Ultrason. Symp., 1986, pp. 889-900. 

  2. D. Yanwa, T. Jia, and S. Yongchen, "Relations between the acoustic nonlinearity parameter and sound speed and tissue composition." in Proc. IEEE Ultrason. Symp., 1987, pp. 931-934. 

  3. P. He and A. McGoron, "Parameter estimation for nonlinear frequency dependent attenuation in soft tissue," Ultrasound Med. Biol., vol. 15, no. 8, pp. 757-763, 1989, 

  4. Y. Hayakawa, T. Wagai, K. Yosioka, T. Inada, T. Suzuki, H. Yagami, and T. Fujii, "Measurement of ultrasound attenuation coefficient by a multifrequency echo technique-Theory and basic experiments." IEEE Trans. Ultrason. Ferroetectr. Frea. Control, vol. 33, no. 6, pp. 759-764, Nov. 1986. 

  5. J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, "Elastography: A quantitative method for imaging the elasticity of biological tissues," UItrason. Imaging, vol. 13, pp. 111-134, 1991. 

  6. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, "Elastic moduli of breast and prostate tissues under compression," Ultrason. Imaging, vol. 20 pp. 260-274, 1998. 

  7. M. O'Donnell, M. A. Lubinski, and S. Y. Emelianov, "Speckle tracking methods for ultrasonic elasticity imaging using shorttime correlation," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 46, no. 1, pp, 82-96, Jan. 1999. 

  8. T. Shiina, N. Nitta, E. Ueno, and J. C. Bamber, "Real time tissue elasticity imaging using the combined autocorrelation method," J. Med. Uitreson., vol. 29, pp. 119-128, 2002. 

  9. A. Pesavento, C. Perrey, M. Krueger, and H. Ermert, "A timeefficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation," IEEE Trans. Ultrason. Ferroelectr. Frea, Control, vol. 46, no. 5, pp. 1057-1067, Sept. 1999. 

  10. M. K. Jeong and S. J. Kwon, "Enhanced strain imaging using quality measure," J. Acoust, Soc. Kor., vol, 27, no. 3E, pp.84-94, Sept. 2008. 

  11. J. Ophir and I. Cespedes, "Reduction of image noise in elastography," Ultrason. Imaging, vol. 15, pp. 89-102, 1993. 

  12. J. Ophir and F. Kallel, "A least-squares strain estimator for elastoqraphy," Ultrason. Imaging. vol. 19, pp. 195-208, 1997. 

  13. S. Kaisar Alam, Jonathan Ophir, and E. E. Konofagou, "An adaptive strain estimator for elastoqrapny,' IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 45, no. 2, pp. 461-472, Mar. 1998. 

  14. T. Varghese and J. Ophir, "Enhancement of echo-signal correlation in elastography using temporal stretching," IEEE Trans. Ultrason. Ferroelectr. Freq, Control, vol. 44, no. 1, pp. 173-180, Jan. 1997. 

  15. J. E. Lindop, G. M. Treece, A. H. Gee, and R. W. Prager, "Estimation of displacement location for enhanced strain imaging," IEEE Trans. Ultrason, Ferroeectr, Freq, Control, vol. 54, no. 9, pp. 1751-1771. Sept. 2007. 

  16. F. Kallel, J. Ophir, K. Magee, and T. Krouskop, "Elastcqraphic imaging of low contrast elastic modulus distribution in tissue," Ultrasound Med, Biol., vol. 24, no. 3, pp, 409-425, 1998. 

  17. R. Righetti, F. Kallel, R. J. Stafford, R. E. Price, T. A. Krouskop, J. D. Hazle, and J. Ophir, "Elastographic Characterization of HIFU-induced lesions in canine livers", Ultrasound Med, Biol., vol. 25, no. 7, pp. 1099-1113, 1999. 

  18. J. Ophir, S. K. Alam, B. Garra, F. Kallel, Konofagou, T. Krouskop, and T. Varghese, "Elastography: Ultrasonic estimation and imaging of the elastic properties of tissues," J. Eng. Med., vol. 213, no. 3, pp. 203-233, 1999. 

  19. L. Sandrin, M. Tanter, S. Catheline, and M. Fink, "Shear modulus imaging with 2-D transient elastography," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 49, no. 4, pp. 426-435, Apr. 2002. 

  20. M. Fink, L. Sandrin, M. Tanter, S. Catheline, S. Chaffai, J. Bercoff, and J.-L. Gennisson. "Ultra high speed imaging of elasticity: in Proc IEEE Ultrason, Symp., 2002, pp. 1811-1820. 

  21. K. J. Parker, L. Gao. S. K. Alam, D. Rubens, and R. M. Lerner, "Sonoelasticity Imaging: Theory and applications: in Proc Ultrason. Symp., 1996, pp. 623-628. 

  22. L. S. Taylor, B. C. Porter, D. J. Rubens, and K. J. Parker, "Three-dimensional sonoelastography: Principles and practices," Phys. Med. Biol.. vol. 45. pp. 1477-1494, 2000. 

  23. A. P. Sarvazyan, O. V. Rudenko, S, D. Swanson, J. B, Fowlkes, and S. Y. Emelianov, "Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics," Ultrasound Med. Biol., vol. 24. no. 9, pp. 1419-1435, 1998. 

  24. S. McAleavey, M. Menon, and D. J. Rubens. "Acoustic radiation force impulse imaging of excised human prostates," in Proc, IEEE Ultrason. Symp., 2000, pp. 1663-1666. 

  25. K. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey, "On the feasibility of remote palpation using acoustic radiation force," J. Acoust, Soc. Am., vol. 110, no. 1, pp. 625-634, July 2001. 

  26. K. Nightingale, M. S. Soo, R. Nightingale, E. Bentley, and G. Trahey, "In vivo demonstration of acoustic radiation force impulse imaging in the thyroid, abdomen, and breast," in Proc, IEEE Ultrason. Symp., 2001, pp. 1633-1638. 

  27. K. Nightingale, M. S. Soo, R. Nightingale, R. Bentley, D. Stutz, M. Palmeri, J. Dahl, and G, Trahey, "Acoustic radiation force impulse imaging: Remote palpation of the mechanical properties of tissue," in Proc. IEEE Ultrason. Symp.. 2002, pp. 1821-1830. 

  28. B. J. Fahey, K. R. Nightingale, R. C. Nelson, M. L. Palmeri, and G. E. Trahey, "Acoustic radiation force impulse imaging of the abdomen: Demonstration of feasibility and utility," Ultrasound Med. Biol., vol. 31, no. 9, pp. 1185-1198, 2005. 

  29. M. L. Palmeri, A. C. Sharma, R. R. Bouchard, R. W. Nightingale, and K. R. Nightingale, "A finite-element method model of soft tissue response to impulsive acoustic radiation force," IEEE Trans. Ultrason. Ferroelectr, Freq, Control, vol. 52, no. 10, pp. 1699-1712, Oct. 2005. 

  30. M. L. Palmeri, S. A. McAleavey, G. E. Trahey, and K. R. Nightingale, "Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. vol. 53, no. 7, pp. 1300-1313, July 2006. 

  31. B. J. Fahey, R. C. Nelson, S. J. Hsu, D. P Bradway, D. M. Dumont, and G. E. Trahey, "In vivo acoustic radiation force impulse imaging of abdominal lesions," in Proc, IEEE Ultrason. Symp., 2007, pp. 440-443. 

  32. M. Fatemi and J. F. Greenleaf, "Ultrasound-stimulated vibroacoustic spectrography," Science, vol. 280, no. 3, pp. 82-85, Apr. 1998. 

  33. M. Fatemi and J. F. Greenleaf, "Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound." Phys. Med, Biol., vol. 45, pp. 1449-1464, 2000. 

  34. J. Greenleaf, M. Fatemi, G. Silva, and M. Urban, ''Vibroacoustography: The most promising approaches and inferred needs for transducers and arrays," in Proc. IEEE Ultrason, Symp., 2006, pp. 2322-2324. 

  35. A. Alizad, D. H. Whaley, R. R. Kinnick, J. F. Greenleaf, and M. Fatemi, "In vivo breast vibro-acoustography: Recent results and new challenges," in Proc, IEEE Ultrason. Symp., 2006, pp. 1659-1662. 

  36. A. Alizad, D. H. Whaley, J. F. Greenleaf, and M. Fatemi, "Critical issues in breast imaging by vibro-acoustography," Ultrasonics, vol. 44, pp. 217-220, 2006. 

  37. J. Bercoff, M. Tanter, and M. Fink, "Supersonic shear imaging: A new technique for soft tissue elasticity mapping," IEEE Trans. UItrason, Ferroelectr. Freq. Control, vol. 51, no. 4, pp. 396-409, Apr. 2004. 

  38. M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.-L, Gennison, G. Montaldo, M. Muller, A. Tardivon, and M. Fink, "Quantitative assessment of breast lesion viscoelasticity: Initial clinical results using supersonic shear imaging," Ultrasound Med. Biol., vol. 34, no. 9, pp. 1373-1386, Sept. 2008. 

  39. J. Bercoff, A. Criton, C. C. Bacrie, J. Souquet, M. Tanter, J.-L. Gennisson, T. Deffieux, and M. Fink, "Shear wave elastoqraphy," in Proc, IEEE Ultrason. Symp.. 2008, pp. 321-324. 

  40. R. S. Lazebnik, "Tissue strain analytics: Virtual touch tissue imaging and quantification' [Online]. Available: http://www.medical.siemens.com/siemens/sv_SE/gg_us_FBAs/files/misc_downloads/Whitepaper_VirtualTouch,pdf. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로