$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고수온 환경에 의해 유도된 산화 스트레스에 대한 넙치의 항산화 작용과 생리적 변화
Antioxidant Defenses and Physiological Changes in Olive Flounder (Paralichthys olivaceus) in Response to Oxidative Stress Induced by Elevated Water Temperature 원문보기

Korean journal of Ichthyology = 한국어류학회지, v.22 no.1, 2010년, pp.1 - 8  

신현숙 (한국해양대학교 해양환경.생명과학부) ,  안광욱 (한국해양대학교 해양환경.생명과학부) ,  김나나 (한국해양대학교 해양환경.생명과학부) ,  최철영 (한국해양대학교 해양환경.생명과학부)

초록
AI-Helper 아이콘AI-Helper

고수온 환경 ($25^{\circ}C$$30^{\circ}C$)에 노출시킨 넙치의 산화 스트레스 정도를 알아보기 위하여 넙치의 간 조직에서 항산화 효소 [superoxide dismutase (SOD)와 catalase(CAT)] mRNA의 발현량 및 그 활성을 측정한 결과, $20^{\circ}C$ 대조구보다 $25^{\circ}C$$30^{\circ}C$ 실험구에서 증가하는 경향을 보였다. 또한 지질 과산화 지표로 사용되는 lipid peroxidation(LPO)을 측정한 결과, $25^{\circ}C$$30^{\circ}C$ 실험구에서 증가하는 경향을 나타내었다. LPO의 증가는 SOD 및 CAT의 증가와 밀접한 관련이 있으며, 체내의 $H_O_2$ 농도 또한 $25^{\circ}C$$30^{\circ}C$ 실험구에서 증가하는 것으로 보아 고수온 환경이 넙치의 산화 스트레스를 유발하고 있는 것으로 사료된다. 고수온 환경에 노출시킨 넙치의 혈중 alanine aminotransferase (AlaAT)와 aspartate aminotransferase (AspAT) 값을 측정 한 결과, AlaAT와 AspAT 모두 유의적으로 증가하는 경향을 보였다. 또한 면역 지표로 사용되는 lysozyme 활성도가 $20^{\circ}C$ 대조구보다 $30^{\circ}C$ 실험구에서 유의적으로 낮은 값을 나타낸 점으로 보아, 고수온 환경에 노출된 넙치에서는 간 세포의 손상뿐만 아니라 면역력 또한 저해되고 있는 것으로 사료된다. 고수온 환경에 노출시킨 넙치에서 항산화 효소인 SOD와 CAT mRNA 발현량 및 활성이 증가하였을 뿐만 아니라 활성산소와 LPO 값 또한 증가된 점으로 보아, 고수온 환경은 넙치의 체내에서 산화 스트레스를 유발시키는 동시에 면역 기능을 저해시키고 있는 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

We determined oxidative stress caused by thermal stress in olive flounder Paralichthys olivaceus based on the altered-mRNA expression and enzymatic activity of two key antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), along with monitoring of several other biomarkers. When the fish...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • , 1995). In this study, we investigated the mRNA expression and/or enzymatic activities of the antioxidant enzymes SOD and CAT as well as the plasma H2O2 concentration and lipid peroxidation (LPO) in order to examine the oxidative stress in olive flounder (Paralichthys olivaceus) exposed to high temperatures. We also examined potential change of immune function during thermal stress based on the analysis of plasma lysozyme concentration, and determine plasma alanine aminotransferase (AlaAT) and aspartate aminotransferase (AspAT) concentrations to measure general stress levels arisen from the thermal changes.
  • In this study, we measured plasma H2O2 and LPO levels, as well as the expression and activity of the antioxidant enzymes SOD and CAT to understand the oxidative stress and mechanism in olive flounder exposed to the high temperature environment. '快 also examined lysozyme-related immune function, AlaAT and AspAT to investigate physiological changes induced by oxidative stress.
  • EF681883(SOD); GQ229479(CAT); EU090804 (|3-actin)]: SOD forward primer (5Z-CGT TGG AGA CCT GGG GAA TGT G-3Z), SOD reverse primer (5Z-ATC GTC AGC CTT CTC GTG GAT C-3Z), CAT forward primer (5Z-GGC TGA GAA GTT CCA GTT CAA TCC-37), CAT reverse primer (5Z-CTC CAC CTC TGC AAA GTA GTT GAC-3'), P-actin forward primer (5‘-GCA AGA GAG GTA TCC TGA CC-3') and P-actin reverse primer (5Z-CTC AGC TCG TTG TAG AAG G-3‘). PCR amplification was conducted using an iCycler iQ Multicolor Real-Time PCR Detection System (BioRad, Hercules, CA, USA) and iQ™ SYBR Green Supermix (Bio-Rad) according to the manufacturer's instructions. QPCR was performed as follows: denaturation at 95℃ for 5 min, 35 cycles of denaturation at 95℃ fo호 20 s, and annealing at 55℃ for 20 s, and extension at 72℃ for 20 s.
  • 5 |ig) was reverse transcribed in a total volume of 20 μL using an oligo-d(T)15 anchor primer and M-MLV reverse transcriptase (Bioneer, Korea) according to the manufacturer's instructions. Primers for QPCR were designed with reference to the known sequences of olive flounder as follows [GenBank accession no. EF681883(SOD); GQ229479(CAT); EU090804 (|3-actin)]: SOD forward primer (5Z-CGT TGG AGA CCT GGG GAA TGT G-3Z), SOD reverse primer (5Z-ATC GTC AGC CTT CTC GTG GAT C-3Z), CAT forward primer (5Z-GGC TGA GAA GTT CCA GTT CAA TCC-37), CAT reverse primer (5Z-CTC CAC CTC TGC AAA GTA GTT GAC-3'), P-actin forward primer (5‘-GCA AGA GAG GTA TCC TGA CC-3') and P-actin reverse primer (5Z-CTC AGC TCG TTG TAG AAG G-3‘). PCR amplification was conducted using an iCycler iQ Multicolor Real-Time PCR Detection System (BioRad, Hercules, CA, USA) and iQ™ SYBR Green Supermix (Bio-Rad) according to the manufacturer's instructions.
  • 9 and ammonia was no detected (0 ppm) in water. The fish were fed a commercial feed formed as extruded pellet (jeilfeed company, kyoungnam, Korea) twice daily (09:00 and 17:00).
  • , Boocheon, Korea), we sampled at 25℃ and 30℃ after 5 days and 10 days started elevating temperature, respectively. The thermal experiment was performed with three replications per group, and five fish from each group [control group (20℃), experimental groups (25℃ and 30℃)] were randomly selected for blood and tissue sampling. The fish were anesthetized with 200 mg/L tricaine methanesulfonate (MS-222; Sigma, St.

대상 데이터

  • Olive flounder (n=60; length, 10±0.5 cm; weight, 19.9± 1.3g) were obtained from a commercial fish farm (Hwanam fishery, Gijanggun, Busan, Korea) and allowed to acclimate to the experimental conditions for 2 weeks in three 300-L flow-through tank system. The water temperature and photoperiod were maintained at 20± 1℃, and 12-h light: 12-h dark, respectively.

데이터처리

  • , USA). One way ANOVA followed by Dunnette post hoc test was used to compare the differences to 20℃ group in the data (P<0.05).

이론/모형

  • QPCR was conducted to determine the relative expression of SOD and CAT mRNA in the total RNA extracted from the liver using the Trizol method according to the man너facturer's instructions (Gibco/BRL, Grand Island, NY, USA). The concentration and purity of the RNA samples was determined by UV spectroscopy at 260 and 280 nm.
본문요약 정보가 도움이 되었나요?

참고문헌 (37)

  1. Abele, D., R. Burlando, A Viarengo and H.O. Portner. 1998. Exposure to elevated temperatures and hydrogen peroxide elicits oxidative stress and antioxidant response in the Antarctic intertidal limpet Naeella concinna. Comp. Biochem. Physiol., B 120: 425-435. 

  2. An, M.I. and C.Y. Choi. 2010. Activity of antioxidant enzymes and physiological responses in ark shell, Scapharca broughtonii, exposed to thermal and osmotic stress: Effects on hemolymph and biochemical parameters. Comp. Biochem. Physiol., B 155: 34-42. 

  3. Bagnyukova, T.V., V.I. Lushchak, K.B. Storey and V.I. Lushchak. 2007. Oxidative stress and antioxidant defense responses by goldfish tissues to acute change of temperature from 3 to $23{^{\circ}C}$ . J. Therm. Biol., 32: 227-234. 

  4. Basha, S.P. and AR. Usha. 2003. Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxical. Environ. Saf., 56: 218-221. 

  5. Bly, J.E. and W. Clem. 1992. Temperature and teleost immune functions. Fish Shellfish Immunol., 2: 159-171. 

  6. Boveris, A., E. Cadenas and A.O.M. Stoppani. 1976. Role of. ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem. J., 156: 435-444. 

  7. Bowden, T.J. 2008. Modulation of the immune system of fish by their environment. Fish Shellfish Immunol., 25: 373-383. 

  8. Chance, B., H. Sies and A. Boveris. 1979. Hydroperoxide metabolism in mammalian organs. Physiol. Rev., 59: 527-605. 

  9. Cheng, A.C., S.A. Cheng, Y.Y. Chen and J.C. Chen. 2009. Effects of temperature change on the innate cellular and humoral immune responses of orange-spotted grouper Epinephelus coioides and its susceptibility to Vibrio alginolyticus. Fish Shellfish Immunol., 26: 768-772. 

  10. Chien, L.T. and D.F. Hwang. 2001. Effects of thermal stress and vitamin C on lipid peroxidation and fatty acid composition in the liver of thornfish Terapon jarbua. Comp. Biochem. Physiol., B 128: 91-97. 

  11. Choi, C.V., B.H. Min, P.G. Jo and Y.J. Chang. 2007. Molecular cloning of PEPCK and stress response of black porgy(Acanthopagrus schlegeli) to increased temperature in freshwater and seawater. Gen. Comp. Endocrinol., 152: 47-53. 

  12. Choi, C.Y., K.W. An, H.S. Shin, M.I. An and P.G. Jo. 2008a. Changes of cytochrome P4501A mRNA expression and physiology responses in the olive flounder, Paraliehthys olivaeeus, exposed to benzo[a]pyrene. Mar. Biol. Res., 4: 470-476. 

  13. Choi, C.Y., K.W. An, Y.K. Choi, P.G. Jo and B.H. Min. 2008b. Expression of warm temperature acclimationrelated protein 65-kDa(Wap65) mRNA, and physiological changes with increasing water temperature in black porgy, Acanthopagrus schlegeli. J. Exp. Zool., A 309: 206-214. 

  14. Collazos, M.E., C. Barriga and E. Ortega. 1995. Effect of high summer temperatures upon granulocyte phagocytic function of the tench (Tinca tinca, L.). Comp. Immun. Microbiol. Infect. Dis., 18: 115-121. 

  15. Djordjevic, J., G. Cvijic, T. Vuckovic and V. Davidovic. 2004. Effect of heat and cold exposure on the rat brain monoamine oxidase and antioxidative enzyme activities. J. Therm. Biol., 29: 861-864. 

  16. Eo, J. and K.J. Lee. 2008. Effect of dietary ascorbic acid on growth and non-specific immune responses of tiger puffer, Takifugu rubripes. Fish Shellfish Immunol., 25: 611-616. 

  17. Esterbauer, H., R.J. Schaur and H. Zoliner. 1991. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med., 11: 81-128. 

  18. Halliwell, B. and J.M.C. Gutteridge. 1989. Free radicals in Biology and Medicine. Clarendon Press, Oxford, pp. 96-98. 

  19. Harari, P.M., D.J. Fuller and E.W. Gerner. 1989. Heat shock stimulates polyamine oxidation by two distinct mechanisms in mammalian cell cultures. Int. J. Radiat. Oncol. Biol. Phys., 16: 451-457. 

  20. Harris, J. and D.V. Bird. 2000. Modulation of the fish immune system by hormones. Vet. Immunol. Immunopathol., 77: 163-176. 

  21. Hochachka, P.W. and G.N. Somera. 1984. Biochemical Adaptation. Princeton University Press, Princeton, New Jersey, 538pp. 

  22. Kashiwagi, A, K. Kashiwagi, M. Takase, H. Hanada and M. Nakamura. 1997. Comparison of catalase in diploid and haploid Rana rugosa using heat and chemical inactivation techniques. Comp. Biochem. Physiol., B 118: 499-503. 

  23. Kim, M.O. and E.B. Phyllis. 1998. Oxidative stress in critical care: is antioxidant supplementation beneficial? J. Am. Diet. Assoc., 98: 1001-1008. 

  24. Liu, Y., W.N. Wang, A.L. Wang, J.M. Wang and R.Y. Sun. 2007. Effects of dietary vitamin E supplementation on antioxidant enzyme activities in Litopenaeus vannamei(Boone, 1931) exposed to acute salinity changes. Aquaculture, 265: 351-358. 

  25. Lushchak, V.I. and T.V. Bagnyukova. 2006a. Temperature increase results in oxidative stress in goldfish tissues: 1. Indices of oxidative stress. Comp. Biochem. Physiol., C 143: 30-35. 

  26. Lushchak, V.I. and T.V. Bagnyukova. 2006b. Temperature increase results in oxidative stress in goldfish tissues: 2. Antioxidant and associated enzymes. Comp. Biochem. Physiol., C 143: 36-41. 

  27. Maule, A.G., R.A Tripp, S.L. Kaattari and C.B. Schreck. 1989. Stress alters immune function and disease resistance in Chinook salmon (Oncorhynchus tshawytscha). J. Endocrinol., 120: 135-142. 

  28. McFarland, V.A., L.S. Inouye, C.H. Lutz, A.S. Jarvis, J.U. Clarke and D.D. McCant. 1999. Biomarkers of oxidative stress and genotoxicity in livers of field-collected brown bullhead, Ameiurus nebulosus. Arch. Environ. Contam. Toxicol., 37: 236-241. 

  29. Nouroozzadeh, J., J. Tajaddinisarmadi and S.P. Wolff. 1994. Measurement of plasma hydroperoxide concentrations by ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal. Biochem., 200: 403-409. 

  30. Pan, C.H., Y.H. Chien and B. Hunter. 2003. The resistance to ammonia stress of Penaeus monodon Fabricius juvenile fed diets supplemented with astaxanthin, J. Exp. Mar. Biol. Ecol., 297: 107-118. 

  31. Pandey, S., S. Parvez, I. Sayeed, R. Haques, B. Bin-Hafeez and S. Raisuddin. 2003. Biomarkers of oxidative stress: a comparative study of river Yamuna fish Wallago attu (BI & Schn.), Sci. Total Environ., 309: 105-115. 

  32. Parihar, M.S., A.K. Dubey, T. Javeri and P. Prakash. 1996. Changes in lipid peroxidation, superoxide dismutase activity, ascorbic acid and phospholipid content in liver of freshwater catfish Heteropneustes fossilis exposed to elevated temperature. J. Therm. Biol., 21: 323-330. 

  33. Pickering, A.D. and T.G. Pottinger. 1989. Stress response and disease resistance in sa1monid fish: effects of chronic elevation of plasma cortisol. Fish Physiol. Biochem., 7: 253-258. 

  34. Schreck, C.B., C.S. Bradford, M.S. Fitzpatrick and R. Patino. 1989. Regulation of the interrenal of fishes: non-classical control mechanism. Fish Physiol. Biochem., 7: 259-265. 

  35. Vaglio, A and C. Landriscina. 1999. Changes in liver enzyme activity in the teleost Sparus aurata in response to cadmium. Ecotoxicol. Environ. Saf., 43: 111-116. 

  36. Wang, F., H. Yang, F. Gao and G. Liu. 2008. Effects of acute temperature or salinity stress on the immune response in sea cucumber, Apostichopus japonicus. Compo Biochem. Physiol., A 151: 491-498. 

  37. Wheeler, C, J. Salzman, N. Elsayed, S. Omaye and D. Korte. 1990. Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Anal. Biochem., 184: 193-199. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로