$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

증류수-부동액 혼합 $Al_2O_3$ 나노유체의 열전도도와 점성계수
Thermal Conductivity and Viscosity of Distilled Water/Commercial Coolant Based $Al_2O_3$ Nanofluids 원문보기

한국자동차공학회논문집 = Transactions of the Korean Society of Automotive Engineers, v.19 no.3, 2011년, pp.130 - 137  

권혜림 (한국항공대학교 항공우주 및 기계공학과) ,  황교식 (한국항공대학교 항공우주 및 기계공학과) ,  장석필 (한국항공대학교 항공우주 및 기계공학부)

Abstract AI-Helper 아이콘AI-Helper

Experimental investigations are conducted to figure out the feasibility of $Al_2O_3$ nanofluids as the alternative coolant for car engine. For the purpose, the thermal conductivities and viscosities of water/commercial coolant based $Al_2O_3$ nanofluids with 0.3, 1.0, 2.0 and 3...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 연구에서는 차량용 냉각 구동 장치에 나노유체의 적용 가능성을 파악하기 위해서 첨가제가 모두 포함된 실제 상업용 차량 냉각 유체인 부동액과 증류수가 혼합된 알루미나 나노유체의 열적 특성 및 유동 특성에 관한 연구를 실시하고자 한다. 이를 위해 부피비 1:1로 증류수와 에틸렌글리콜을 주성분으로 하는 자동차용 냉각 유체인 부동액(극동제연)을 혼합한 기본 유체에 알루미나 나노입자를 Two-step 방법을 이용하여5) 분산시켜 나노입자 부피비가 0.
  • 본 연구에서는 나노유체의 차량용 냉각 구동 장치의 적용 가능성을 파악하기 위해 첨가제가 모두 포함된 실제 상업용 차량 냉각 유체인 부동액과 증류수가 혼합된 이용한 나노유체의 열적 특성 및 유동 특성에 관한 연구를 실시하였다. 이를 위해서 물 (DI-water)과 상용 냉각유체인 부동액을 부피비 1:1로 혼합한 기본 유체에 알루미나 입자가 0.
  • 제작된 나노유체의 열전도도 및 점성계수를 25°C부터 35°C까지의 온도영역에서 측정하였다. 측정된 기본 물성을 바탕으로 차량용 냉각 구동 장치에나노유체의 적용 가능성을 파악하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
동일 전단응력일 때 0.3~3%의 부피비를 가지는 나노유체의 점성 계수는 부피비와 어떤 상관관계를 가지는가? 6과 7에서 보듯이 동일 전단응력일 때 0.3~3%의 부피비를 가지는 나노유체의 점성 계수는 부피비가 높을수록 증가하는것을 확인할 수있다.
냉각 유로의 소형화가 가지는 한계는? 이런 이슈들에 의해 기존 냉각유로를 소형화함으로써 열전달성능을 향상 시켜 연비 향상을 이룰 뿐만 아니라 이산화탄소 배출량을 줄이려는 시도가 계속되고 있다.1) 하지만 여전히 냉각 유로의 소형화는 냉각수를 냉각 유로로 흐르게 하는데 필요한 펌핑파워(Pumping Power)를 매우 증가시키게 되어 실제 연비 개선에 한계가 있음이 보고되고 있다.2) 따라서 동일한 펌핑파워(Pumping Power) 조건에서 연소실 냉각성능 증가시킬 수 있는 새로운 돌파구가 필요한 시점에 있다.
나노입자를 유체 속에 분산, 부유시킨 나노유체의 우수성은 무엇인가? 나노입자를 유체 속에 분산, 부유시킨 나노유체가 개발되었으며 그 유체의 특성이 지난 10여 년간 많은 연구자들에 의해서 실험 및 이론적으로 제시되었다. 그 결과에 의하면 일반 열전달 유체보다 열전달 특성 즉 열전도도 및 대류열전달 계수가 우수하다고 보고하고 있다.3-11) 특히 최근에 Beck et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (35)

  1. M. S. Lyu, "Vehicle Fuel Economy Improvement by Studies on the Engine Cooling and Ancilliaries System of the Heavy Duty Engine," Transactions of KSAE, Vol.15, No.3, pp.79-84, 2007. 

  2. Y. S. Lyu, J. H. Ryu, S. W. Jung, M. S. Jeon, D. W. Kim, M. D. Eom and J. C. Kim, "A Study on the Charateristics of Carbon Dioxide Emissions from Gasoline Passenger Cars," Transactions of KSAE, Vol.15, No2, pp.58-64, 2007. 

  3. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thomson, "Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol based Nanofluids Containing Copper Nanoparticles," Appl. Phys. Lett., Vol.78, No.6, pp.718- 720, 2001. 

  4. S. H. Kim, S. R. Choi and D. Kim, "Thermal Conductivity of Metaloxide Nanofluids: Particle Size Dependence and Effect of Laser Irradiation," ASME J. Heat. Transf., Vol.129, pp.298-307, 2007. 

  5. S. Lee, S. U. S. Choi, S. Li and J. A. Eastman, "Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles," J. Heat Transf., Vol.121, pp.280-289, 1999. 

  6. C. H. Li and G. P. Peterson, "Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (nanofluids)," J. Appl. Phys., Vol.99, 084314, 2006. 

  7. C. H. Li and G. P. Peterson, "The Effect of Particle Size on the Effective Thermal Conductivity of $Al_{2}O_{3}$ -water Nanofluids," J. Appl. Phys., Vol.101, 044312, 2007. 

  8. S. M. S. Murshed, K. C. Leong and C. Yang, "Enhanced Thermal Conductivity of $TiO_{2}$ - water Based Nanofluids," Int. J. Therm. Sci., Vol.44, pp.367-373, 2005. 

  9. S. M. S. Murshed, K. C. Leong and C. Yang, "Investigations of Thermal Conductivity and Viscosity of Nanofluids," Int. J. Therm. Sci., Vol.47, pp.560-568, 2008. 

  10. H. E. Patel, S. K. Das, T. Sundararajan, N. A. Sreekumaran, B. George and T. Pradeep, "Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects," Appl. Phys. Lett., Vol.83, No.14, pp.2931-2933, 2003. 

  11. J. A. Eastman, S. U. S. Choi, S. Li and L. J. Thompson, "Enhanced Thermal Conductivity through the Development of Nanofluids," Proc. Symp. Nanophase and Nanocomposite Mater. II, Vol.457, pp.2-11, 1997. 

  12. M. P. Beck, Y. Yuan, P. Warrier, A. S. Teja, "The Thermal Conductivity of Alumina Nanofluids in Water, Ethylene Glycol, and Thylene Glycol + Water Mixtures," Journal of Nanopart Research Paper, Vol.12, No.4, pp.1469-1477, 2009. 

  13. H. E. Patel, T. Sundararajan and S. K. Das, "An Experimental Investigation into the Thermal Conducticity Enhancement in Oxide and Metallic Nanofluids," Journal of Nanopart Research Paper, 2010. 

  14. F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, 5th Edn., Wiley, New Jersey, 2002. 

  15. J. C. Maxwell, A Treatise on Electricity and Magnetism, pp.360-366, Oxford : Clarendon Press, Oxfordshire, 1873. 

  16. D. P. H. Hasselman and Lloyd F. Johnson, "Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance," Journal of Composite Materials, Vol.21, pp.508- 515, 1987. 

  17. S. K. Das, N. Putra and W. Roetzel, "Pool Boiling Characteristics of Nano-fluids," International Journal of Heat and Mass Transfer, Vol.46, pp.851-862, 2003. 

  18. R. Prasher, D. Song and J. Wang, P. Phelan, "Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications," Applied Physics Letters 89, 133108, 2006. 

  19. N. Putra, W. Roetzel and S. K. Das, "Natural Convection of Nano-fluids," Heat and Mass Transfer, Vol.39, pp.775-784, 2003. 

  20. H. L. Kwon and S. P. Jang, "Study on Thermal Conductivity and Viscosity of Distilled Water/ Commercial Coolant Based $Al_{2}O_{3}$ Nanofluids," Trans., 2010 Spring Annual Conference, KSME, pp.42-45, 2010. 

  21. Y. Ding, H. Alias, D. Wen and R. A. Williams, "Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)," International Journal of Heat and Mass Transfer, Vol.49, pp.240-250, 2006. 

  22. Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang and H. Lu, "Heat Transfer and Flow Behavior of Aqueous Suspensions of $TiO_{2}$ Nano Particles (nanofluids) Flowing Upward through a Vertical Pipe," International Journal of Heat and Mass Transfer, Vol.50, pp.2272-2281, 2007. 

  23. K. Y. Kwak and C. Y. Kim, "Viscosity and Thermal Conductivity of Copper Oxide Nanofluid Dispersed in Ethylene Glycol," Korea- Australia Rheology Journal, Vol.17, No.2, pp.35-40, 2005. 

  24. H. Chen, W. Yang, Y. He, Y. Ding, L. A. A. Lapkin and D. V. Bavykin, "Heat Transfer and Flow Behaviour of Aqueous Suspensions of Titanate Nanotubes (Nanofluids)," Powder Technology, Vol.183, pp.63-72, 2008. 

  25. W. Yu, H. Xie, L. Chen and Y. Li, "Investigation of Thermal Conductivity and Viscosity of Ethylene Glycol Based ZnO Nanofluid," Thermochemical Acta, Vol.491, No.1-2, pp.92- 96, 2009. 

  26. H. Chen, Y. Ding and C. Tan, "Rheological Behaviour of Nanofluids," New Journal of Physics, Vol.9, p.367, 2007. 

  27. H. Chen, Y. Ding and A. Lapkin, "Rheological Behaviour of Nanofluids Containing Tube / Rod-like Nanoparticles," Powder Technology, Vol.194, pp.132-141, 2009. 

  28. A. Einstein, "Eine Neue Bestimmung der Molekul," Annalen der Physik., Vol.19, Vol.2, pp.289-306, 1906. 

  29. G. K. Batchelor, "Effect of Brownian-motion on Bulk Stress in a Suspension of Sphericalparticles," Journal of Fluid Mechanics, Vol.83, No.1, pp.97-117, 1977. 

  30. B. C. Pak and Y. I. Cho, "Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particle," Experimental Heat Transfer, Vol.11, pp.151-170, 1998. 

  31. C. T. Nguyen, G. Roy, C. Gauthier and N. Galanis, "Heat Transfer Enhancement Using $Al_{2}O_{3}$ -water Nanofluid for an Eletronic Cooling System," Applied Thermal Engineering, Vol.27, pp.1501-1506, 2007. 

  32. D. Kim, Y. Kwon, Y. Cho, C. Li, S. Cheong, Y. Hwang, J. Lee, D. Hong and S, Moon, "Convective Heat Transfer Characteristics of Nanofluids under Laminar and Turbulent Flow Conditions," Current Applied Physics, Vol.9, pp.119-123, 2004. 

  33. D. Wen and Y. Ding, "Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions," International Journal of Heat and Mass Transfer, Vol.47, pp.5181-5188, 2004. 

  34. K. B. Anoop, T. Sundararajan and S. K. Das, "Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region," International Journal of Heat and Mass Transfer, Vol.52, pp.2189-2195, 2009. 

  35. K. S. Hwang, S. P. Jang and S. U. S. Choi, "Flow and Convective Heat Transfer Characteristics of Water-based $Al_{2}O_{3}$ Nanofluids in Fully Developed Laminar Flow Regime," International Journal of Heat and Mass Transfer, Vol.52, pp.193-199, 2009. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로